Learning Representations for Time Series Clustering

Qianli Ma, Jiawei Zheng, Sen Li, Gary W. Cottrell

Neural Information Processing Systems 

Time series clustering is an essential unsupervised technique in cases when category information is not available. It has been widely applied to genome data, anomaly detection, and in general, in any domain where pattern detection is important. Although feature-based time series clustering methods are robust to noise and outliers, and can reduce the dimensionality of the data, they typically rely on domain knowledge to manually construct high-quality features. Sequence to sequence (seq2seq) models can learn representations from sequence data in an unsupervised manner by designing appropriate learning objectives, such as reconstruction and context prediction. When applying seq2seq to time series clustering, obtaining a representation that effectively represents the temporal dynamics of the sequence, multi-scale features, and good clustering properties remains a challenge.