Continuous Spatiotemporal Events Decoupling through Spike-based Bayesian Computation 2 1

Neural Information Processing Systems 

Numerous studies have demonstrated that the cognitive processes of the human brain can be modeled using the Bayes theorem for probabilistic inference of the external world. Spiking neural networks (SNNs), capable of performing Bayesian computation with greater physiological interpretability, offer a novel approach to distributed information processing in the cortex. However, applying these models to real-world scenarios to harness the advantages of brain-like computation remains a challenge. Recently, bio-inspired sensors with high dynamic range and ultra-high temporal resolution have been widely used in extreme vision scenarios. Event streams, generated by various types of motion, represent spatiotemporal data.