Ziggurat: Steps Toward a General Episodic Memory
Faltersack, Zachary (University of Portland) | Burns, Brian (University of Portland) | Nuxoll, Andrew (University of Portland) | Crenshaw, Tanya L. (University of Portland)
Evidence indicates that episodic memory plays an important role in general cognition. A modest body of research exists for creating artificial episodic memory systems. To date, research has focused on exploring their benefits. As a result, existing episodic memory systems rely on a small, relevant memory cue for effective memory retrieval. We present Ziggurat, a domain-independent episodic memory structure and accompanying episodic learning algorithm that learns the temporal context of recorded episodes. Ziggurat's context-based memory retrieval means that it does not have to rely on relevant agent cues for effective memory retrieval; it also allows an agent to dynamically make plans using past experiences. In our experimental trials in two different domains, Ziggurat performs as well or better than an episodic memory implementation based on most other systems.
Nov-1-2011