Limitations of Self-organizing Maps for Vector Quantization and Multidimensional Scaling

Flexer, Arthur

Neural Information Processing Systems 

SaM can be said to do clustering/vector quantization (VQ) and at the same time to preserve the spatial ordering of the input data reflected by an ordering of the code book vectors (cluster centroids) in a one or two dimensional output space, where the latter property is closely related to multidimensional scaling (MDS) in statistics. Although the level of activity and research around the SaM algorithm is quite large (a recent overview by [Kohonen 95] contains more than 1000 citations), only little comparison among the numerous existing variants of the basic approach and also to more traditional statistical techniques of the larger frameworks of VQ and MDS is available. Additionally, there is only little advice in the literature about how to properly use 446 A. Flexer SOM in order to get optimal results in terms of either vector quantization (VQ) or multidimensional scaling or maybe even both of them. To make the notion of SOM being a tool for "data visualization" more precise, the following question has to be answered: Should SOM be used for doing VQ, MDS, both at the same time or none of them? Two recent comprehensive studies comparing SOM either to traditional VQ or MDS techniques separately seem to indicate that SOM is not competitive when used for either VQ or MDS: [Balakrishnan et al. 94J compare SOM to K-means clustering on 108 multivariate normal clustering problems with known clustering solutions and show that SOM performs significantly worse in terms of data points misclassified

Similar Docs  Excel Report  more

TitleSimilaritySource
None found