Approximate Learning of Dynamic Models

Boyen, Xavier, Koller, Daphne

Neural Information Processing Systems 

Inference is a key component in learning probabilistic models from partially observable data. When learning temporal models, each of the many inference phases requires a traversal over an entire long data sequence; furthermore, the data structures manipulated are exponentially large, making this process computationally expensive. In [2], we describe an approximate inference algorithm for monitoring stochastic processes, and prove bounds on its approximation error. In this paper, we apply this algorithm as an approximate forward propagation step in an EM algorithm for learning temporal Bayesian networks. We provide a related approximation for the backward step, and prove error bounds for the combined algorithm.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found