Boyen, Xavier
Tractable Inference for Complex Stochastic Processes
Boyen, Xavier, Koller, Daphne
The monitoring and control of any dynamic system depends crucially on the ability to reason about its current status and its future trajectory. In the case of a stochastic system, these tasks typically involve the use of a belief state- a probability distribution over the state of the process at a given point in time. Unfortunately, the state spaces of complex processes are very large, making an explicit representation of a belief state intractable. Even in dynamic Bayesian networks (DBNs), where the process itself can be represented compactly, the representation of the belief state is intractable. We investigate the idea of maintaining a compact approximation to the true belief state, and analyze the conditions under which the errors due to the approximations taken over the lifetime of the process do not accumulate to make our answers completely irrelevant. We show that the error in a belief state contracts exponentially as the process evolves. Thus, even with multiple approximations, the error in our process remains bounded indefinitely. We show how the additional structure of a DBN can be used to design our approximation scheme, improving its performance significantly. We demonstrate the applicability of our ideas in the context of a monitoring task, showing that orders of magnitude faster inference can be achieved with only a small degradation in accuracy.
Discovering the Hidden Structure of Complex Dynamic Systems
Boyen, Xavier, Friedman, Nir, Koller, Daphne
Dynamic Bayesian networks provide a compact and natural representation for complex dynamic systems. However, in many cases, there is no expert available from whom a model can be elicited. Learning provides an alternative approach for constructing models of dynamic systems. In this paper, we address some of the crucial computational aspects of learning the structure of dynamic systems, particularly those where some relevant variables are partially observed or even entirely unknown. Our approach is based on the Structural Expectation Maximization (SEM) algorithm. The main computational cost of the SEM algorithm is the gathering of expected sufficient statistics. We propose a novel approximation scheme that allows these sufficient statistics to be computed efficiently. We also investigate the fundamental problem of discovering the existence of hidden variables without exhaustive and expensive search. Our approach is based on the observation that, in dynamic systems, ignoring a hidden variable typically results in a violation of the Markov property. Thus, our algorithm searches for such violations in the data, and introduces hidden variables to explain them. We provide empirical results showing that the algorithm is able to learn the dynamics of complex systems in a computationally tractable way.
Approximate Learning of Dynamic Models
Boyen, Xavier, Koller, Daphne
Inference is a key component in learning probabilistic models from partially observable data. When learning temporal models, each of the many inference phases requires a traversal over an entire long data sequence; furthermore, the data structures manipulated are exponentially large, making this process computationally expensive. In [2], we describe an approximate inference algorithm for monitoring stochastic processes, and prove bounds on its approximation error. In this paper, we apply this algorithm as an approximate forward propagation step in an EM algorithm for learning temporal Bayesian networks. We provide a related approximation for the backward step, and prove error bounds for the combined algorithm.
Approximate Learning of Dynamic Models
Boyen, Xavier, Koller, Daphne
Inference is a key component in learning probabilistic models from partially observabledata. When learning temporal models, each of the many inference phases requires a traversal over an entire long data sequence; furthermore,the data structures manipulated are exponentially large, making this process computationally expensive. In [2], we describe an approximate inference algorithm for monitoring stochastic processes, and prove bounds on its approximation error. In this paper, we apply this algorithm as an approximate forward propagation step in an EM algorithm for learning temporal Bayesian networks. We provide a related approximation forthe backward step, and prove error bounds for the combined algorithm.
Approximate Learning of Dynamic Models
Boyen, Xavier, Koller, Daphne
Inference is a key component in learning probabilistic models from partially observable data. When learning temporal models, each of the many inference phases requires a traversal over an entire long data sequence; furthermore, the data structures manipulated are exponentially large, making this process computationally expensive. In [2], we describe an approximate inference algorithm for monitoring stochastic processes, and prove bounds on its approximation error. In this paper, we apply this algorithm as an approximate forward propagation step in an EM algorithm for learning temporal Bayesian networks. We provide a related approximation for the backward step, and prove error bounds for the combined algorithm.