MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild

Gregory Rogez, Cordelia Schmid

Neural Information Processing Systems 

This paper addresses the problem of 3D human pose estimation in the wild. A significant challenge is the lack of training data, i.e., 2D images of humans annotated with 3D poses. Such data is necessary to train state-of-the-art CNN architectures. Here, we propose a solution to generate a large set of photorealistic synthetic images of humans with 3D pose annotations. We introduce an image-based synthesis engine that artificially augments a dataset of real images with 2D human pose annotations using 3D Motion Capture (MoCap) data.