Generalized Value Iteration Networks:Life Beyond Lattices
Niu, Sufeng (Clemson University) | Chen, Siheng (Uber Advanced Technologies Group ) | Guo, Hanyu (Clemson University) | Targonski, Colin (Clemson University) | Smith, Melissa C. (Clemson University) | Kovačević, Jelena (Carnegie Mellon University)
In this paper, we introduce a generalized value iteration network (GVIN), which is an end-to-end neural network planning module. GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. We propose three novel differentiable kernels as graph convolution operators and show that the embedding-based kernel achieves the best performance. Furthermore, we present episodic Q-learning, an improvement upon traditional n-step Q-learning that stabilizes training for VIN and GVIN. Lastly, we evaluate GVIN on planning problems in 2D mazes, irregular graphs, and real-world street networks, showing that GVIN generalizes well for both arbitrary graphs and unseen graphs of larger scaleand outperforms a naive generalization of VIN (discretizing a spatial graph into a 2D image).
Feb-8-2018
- Country:
- North America > United States (0.69)
- Industry:
- Leisure & Entertainment > Games (0.68)
- Transportation (0.48)
- Technology: