Goto

Collaborating Authors

 Ontologies


Geospatial semantics: beyond ontologies, towards an enactive approach

arXiv.org Artificial Intelligence

Current approaches to semantics in the geospatial domain are mainly based on ontologies, but ontologies, since continue to build entirely on the symbolic methodology, suffers from the classical problems, e.g. the symbol grounding problem, affecting representational theories. We claim for an enactive approach to semantics, where meaning is considered to be an emergent feature arising context-dependently in action. Since representational theories are unable to deal with context, a new formalism is required toward a contextual theory of concepts. SCOP is considered a promising formalism in this sense and is briefly described.


On Introspection, Metacognitive Control and Augmented Data Mining Live Cycles

arXiv.org Artificial Intelligence

We discuss metacognitive modelling as an enhancement to cognitive modelling and computing. Metacognitive control mechanisms should enable AI systems to self-reflect, reason about their actions, and to adapt to new situations. In this respect, we propose implementation details of a knowledge taxonomy and an augmented data mining life cycle which supports a live integration of obtained models.


Edhibou: a Customizable Interface for Decision Support in a Semantic Portal

arXiv.org Artificial Intelligence

The Semantic Web is becoming more and more a reality, as the required technologies have reached an appropriate level of maturity. However, at this stage, it is important to provide tools facilitating the use and deployment of these technologies by end-users. In this paper, we describe EdHibou, an automatically generated, ontology-based graphical user interface that integrates in a semantic portal. The particularity of EdHibou is that it makes use of OWL reasoning capabilities to provide intelligent features, such as decision support, upon the underlying ontology. We present an application of EdHibou to medical decision support based on a formalization of clinical guidelines in OWL and show how it can be customized thanks to an ontology of graphical components.


Combining Semantic Wikis and Controlled Natural Language

arXiv.org Artificial Intelligence

We demonstrate AceWiki that is a semantic wiki using the controlled natural language Attempto Controlled English (ACE). The goal is to enable easy creation and modification of ontologies through the web. Texts in ACE can automatically be translated into first-order logic and other languages, for example OWL. Previous evaluation showed that ordinary people are able to use AceWiki without being instructed.


Networks and Natural Language Processing

AI Magazine

Over the last few years, a number of areas of natural language processing have begun applying graph-based techniques. These include, among others, text summarization, syntactic parsing, word-sense disambiguation, ontology construction, sentiment and subjectivity analysis, and text clustering. In this paper, we present some of the most successful graph-based representations and algorithms used in language processing and try to explain how and why they work.


The Fractal Nature of the Semantic Web

AI Magazine

In the past, many knowledge representation systems failed because they were too monolithic and didnโ€™t scale well, whereas other systems failed to have an impact because they were small and isolated. Along with this trade-off in size, there is also a constant tension between the cost involved in building a larger community that can interoperate through common terms and the cost of the lack of interoperability. The semantic web offers a good compromise between these approaches as it achieves wide-scale communication and interoperability using finite effort and cost. The semantic web is a set of standards for knowledge representation and exchange that is aimed at providing interoperability across applications and organizations. We believe that the gathering success of this technology is not derived from the particular choice of syntax or of logic. Its main contribution is in recognizing and supporting the fractal patterns of scalable web systems. These systems will be composed of many overlapping communities of all sizes, ranging from one individual to the entire population that have internal (but not global) consistency. The information in these systems, including documents and messages, will contain some terms that are understood and accepted globally, some that are understood within certain communities, and some that are understood locally within the system. The amount of interoperability between interacting agents (software or human) will depend on how many communities they have in common and how many ontologies (groups of consistent and related terms) they share. In this article we discuss why fractal patterns are an appropriate model for web systems and how semantic web technologies can be used to design scalable and interoperable systems.


Grammar-Based Random Walkers in Semantic Networks

arXiv.org Artificial Intelligence

Semantic networks qualify the meaning of an edge relating any two vertices. Determining which vertices are most "central" in a semantic network is difficult because one relationship type may be deemed subjectively more important than another. For this reason, research into semantic network metrics has focused primarily on context-based rankings (i.e. user prescribed contexts). Moreover, many of the current semantic network metrics rank semantic associations (i.e. directed paths between two vertices) and not the vertices themselves. This article presents a framework for calculating semantically meaningful primary eigenvector-based metrics such as eigenvector centrality and PageRank in semantic networks using a modified version of the random walker model of Markov chain analysis. Random walkers, in the context of this article, are constrained by a grammar, where the grammar is a user defined data structure that determines the meaning of the final vertex ranking. The ideas in this article are presented within the context of the Resource Description Framework (RDF) of the Semantic Web initiative.


Initial Results on the F-logic to OWL Bi-directional Translation on a Tabled Prolog Engine

arXiv.org Artificial Intelligence

In this paper, we show our results on the bi-directional data exchange between the F-logic language supported by the Flora2 system and the OWL language. Most of the TBox and ABox axioms are translated preserving the semantics between the two representations, such as: proper inclusion, individual definition, functional properties, while some axioms and restrictions require a change in the semantics, such as: numbered and qualified cardinality restrictions. For the second case, we translate the OWL definite style inference rules into F-logic style constraints. We also describe a set of reasoning examples using the above translation, including the reasoning in Flora2 of a variety of ABox queries.


Commonsense Knowledge, Ontology and Ordinary Language

arXiv.org Artificial Intelligence

Over two decades ago a "quite revolution" overwhelmingly replaced knowledgebased approaches in natural language processing (NLP) by quantitative (e.g., statistical, corpus-based, machine learning) methods. Although it is our firm belief that purely quantitative approaches cannot be the only paradigm for NLP, dissatisfaction with purely engineering approaches to the construction of large knowledge bases for NLP are somewhat justified. In this paper we hope to demonstrate that both trends are partly misguided and that the time has come to enrich logical semantics with an ontological structure that reflects our commonsense view of the world and the way we talk about in ordinary language. In this paper it will be demonstrated that assuming such an ontological structure a number of challenges in the semantics of natural language (e.g., metonymy, intensionality, copredication, nominal compounds, etc.) can be properly and uniformly addressed.


Text Modeling using Unsupervised Topic Models and Concept Hierarchies

arXiv.org Artificial Intelligence

Statistical topic models provide a general data-driven framework for automated discovery of high-level knowledge from large collections of text documents. While topic models can potentially discover a broad range of themes in a data set, the interpretability of the learned topics is not always ideal. Human-defined concepts, on the other hand, tend to be semantically richer due to careful selection of words to define concepts but they tend not to cover the themes in a data set exhaustively. In this paper, we propose a probabilistic framework to combine a hierarchy of human-defined semantic concepts with statistical topic models to seek the best of both worlds. Experimental results using two different sources of concept hierarchies and two collections of text documents indicate that this combination leads to systematic improvements in the quality of the associated language models as well as enabling new techniques for inferring and visualizing the semantics of a document.