Goto

Collaborating Authors

Ontologies


On the Complexity of Learning Description Logic Ontologies

arXiv.org Artificial Intelligence

Ontologies are a popular way of representing domain knowledge, in particular, knowledge in domains related to life sciences. (Semi-)automating the process of building an ontology has attracted researchers from different communities into a field called "Ontology Learning". We provide a formal specification of the exact and the probably approximately correct learning models from computational learning theory. Then, we recall from the literature complexity results for learning lightweight description logic (DL) ontologies in these models. Finally, we highlight other approaches proposed in the literature for learning DL ontologies.


The Inescapable Duality of Data and Knowledge

arXiv.org Artificial Intelligence

We will discuss how over the last 30 to 50 years, systems that focused only on data have been handicapped with success focused on narrowly focused tasks, and knowledge has been critical in developing smarter, intelligent, more effective systems. We will draw a parallel with the role of knowledge and experience in human intelligence based on cognitive science. And we will end with the recent interest in neuro-symbolic or hybrid AI systems in which knowledge is the critical enabler for combining data-intensive statistical AI systems with symbolic AI systems which results in more capable AI systems that support more human-like intelligence.


Actionable Cognitive Twins for Decision Making in Manufacturing

arXiv.org Artificial Intelligence

Actionable Cognitive Twins are the next generation Digital Twins enhanced with cognitive capabilities through a knowledge graph and artificial intelligence models that provide insights and decision-making options to the users. The knowledge graph describes the domain-specific knowledge regarding entities and interrelationships related to a manufacturing setting. It also contains information on possible decision-making options that can assist decision-makers, such as planners or logisticians. In this paper, we propose a knowledge graph modeling approach to construct actionable cognitive twins for capturing specific knowledge related to demand forecasting and production planning in a manufacturing plant. The knowledge graph provides semantic descriptions and contextualization of the production lines and processes, including data identification and simulation or artificial intelligence algorithms and forecasts used to support them. Such semantics provide ground for inferencing, relating different knowledge types: creative, deductive, definitional, and inductive. To develop the knowledge graph models for describing the use case completely, systems thinking approach is proposed to design and verify the ontology, develop a knowledge graph and build an actionable cognitive twin. Finally, we evaluate our approach in two use cases developed for a European original equipment manufacturer related to the automotive industry as part of the European Horizon 2020 project FACTLOG.


Common Sense Knowledge, Ontology and Text Mining for Implicit Requirements

arXiv.org Artificial Intelligence

The ability of a system to meet its requirements is a strong determinant of success. Thus effective requirements specification is crucial. Explicit Requirements are well-defined needs for a system to execute. IMplicit Requirements (IMRs) are assumed needs that a system is expected to fulfill though not elicited during requirements gathering. Studies have shown that a major factor in the failure of software systems is the presence of unhandled IMRs. Since relevance of IMRs is important for efficient system functionality, there are methods developed to aid the identification and management of IMRs. In this paper, we emphasize that Common Sense Knowledge, in the field of Knowledge Representation in AI, would be useful to automatically identify and manage IMRs. This paper is aimed at identifying the sources of IMRs and also proposing an automated support tool for managing IMRs within an organizational context. Since this is found to be a present gap in practice, our work makes a contribution here. We propose a novel approach for identifying and managing IMRs based on combining three core technologies: common sense knowledge, text mining and ontology. We claim that discovery and handling of unknown and non-elicited requirements would reduce risks and costs in software development.


Semantic Contextual Reasoning to Provide Human Behavior

arXiv.org Artificial Intelligence

In recent years, the world has witnessed various primitives pertaining to the complexity of human behavior. Identifying an event in the presence of insufficient, incomplete, or tentative premises along with the constraints on resources such as time, data and memory is a vital aspect of an intelligent system. Data explosion presents one of the most challenging research issues for intelligent systems; to optimally represent and store this heterogeneous and voluminous data semantically to provide human behavior. There is a requirement of intelligent but personalized human behavior subject to constraints on resources and priority of the user. Knowledge, when represented in the form of an ontology, procures an intelligent response to a query posed by users; but it does not offer content in accordance with the user context. To this aim, we propose a model to quantify the user context and provide semantic contextual reasoning. A diagnostic belief algorithm (DBA) is also presented that identifies a given event and also computes the confidence of the decision as a function of available resources, premises, exceptions, and desired specificity. We conduct an empirical study in the domain of day-to-day routine queries and the experimental results show that the answer to queries and also its confidence varies with user context.


Using a Personal Health Library-Enabled mHealth Recommender System for Self-Management of Diabetes Among Underserved Populations: Use Case for Knowledge Graphs and Linked Data

arXiv.org Artificial Intelligence

Personal health libraries (PHLs) provide a single point of secure access to patients digital health data and enable the integration of knowledge stored in their digital health profiles with other sources of global knowledge. PHLs can help empower caregivers and health care providers to make informed decisions about patients health by understanding medical events in the context of their lives. This paper reports the implementation of a mobile health digital intervention that incorporates both digital health data stored in patients PHLs and other sources of contextual knowledge to deliver tailored recommendations for improving self-care behaviors in diabetic adults. We conducted a thematic assessment of patient functional and nonfunctional requirements that are missing from current EHRs based on evidence from the literature. We used the results to identify the technologies needed to address those requirements. We describe the technological infrastructures used to construct, manage, and integrate the types of knowledge stored in the PHL. We leverage the Social Linked Data (Solid) platform to design a fully decentralized and privacy-aware platform that supports interoperability and care integration. We provided an initial prototype design of a PHL and drafted a use case scenario that involves four actors to demonstrate how the proposed prototype can be used to address user requirements, including the construction and management of the PHL and its utilization for developing a mobile app that queries the knowledge stored and integrated into the PHL in a private and fully decentralized manner to provide better recommendations. The proposed PHL helps patients and their caregivers take a central role in making decisions regarding their health and equips their health care providers with informatics tools that support the collection and interpretation of the collected knowledge.


Crossing the Tepper Line: An Emerging Ontology for Describing the Dynamic Sociality of Embodied AI

arXiv.org Artificial Intelligence

Artificial intelligences (AI) are increasingly being embodied and embedded in the world to carry out tasks and support decision-making with and for people. Robots, recommender systems, voice assistants, virtual humans - do these disparate types of embodied AI have something in common? Here we show how they can manifest as "socially embodied AI." We define this as the state that embodied AI "circumstantially" take on within interactive contexts when perceived as both social and agentic by people. We offer a working ontology that describes how embodied AI can dynamically transition into socially embodied AI. We propose an ontological heuristic for describing the threshold: the Tepper line. We reinforce our theoretical work with expert insights from a card sort workshop. We end with two case studies to illustrate the dynamic and contextual nature of this heuristic.


Universal Representation Learning of Knowledge Bases by Jointly Embedding Instances and Ontological Concepts

arXiv.org Artificial Intelligence

Many large-scale knowledge bases simultaneously represent two views of knowledge graphs (KGs): an ontology view for abstract and commonsense concepts, and an instance view for specific entities that are instantiated from ontological concepts. Existing KG embedding models, however, merely focus on representing one of the two views alone. In this paper, we propose a novel two-view KG embedding model, JOIE, with the goal to produce better knowledge embedding and enable new applications that rely on multi-view knowledge. JOIE employs both cross-view and intra-view modeling that learn on multiple facets of the knowledge base. The cross-view association model is learned to bridge the embeddings of ontological concepts and their corresponding instance-view entities. The intra-view models are trained to capture the structured knowledge of instance and ontology views in separate embedding spaces, with a hierarchy-aware encoding technique enabled for ontologies with hierarchies. We explore multiple representation techniques for the two model components and investigate with nine variants of JOIE. Our model is trained on large-scale knowledge bases that consist of massive instances and their corresponding ontological concepts connected via a (small) set of cross-view links. Experimental results on public datasets show that the best variant of JOIE significantly outperforms previous models on instance-view triple prediction task as well as ontology population on ontologyview KG. In addition, our model successfully extends the use of KG embeddings to entity typing with promising performance.


A conditional, a fuzzy and a probabilistic interpretation of self-organising maps

arXiv.org Artificial Intelligence

In this paper we establish a link between preferential semantics for description logics and self-organising maps, which have been proposed as possible candidates to explain the psychological mechanisms underlying category generalisation. In particular, we show that a concept-wise multipreference semantics, which takes into account preferences with respect to different concepts and has been recently proposed for defeasible description logics, can be used to to provide a logical interpretation of SOMs. We also provide a logical interpretation of SOMs in terms of a fuzzy description logic as well as a probabilistic account.


Pinaki Laskar on LinkedIn: #AI #Ontology #datascience

#artificialintelligence

Ontology encompasses problems about the most general properties and relations of the entities which do exist. Ontology is the way we can connect entities and understand their relationships, their types & tokens. With ontology one can enable such a description, but first we need to formally specify components such as individuals (tokens, instances of objects), classes (types), attributes (properties) and relations (limitations & restrictions, rules & axioms). Formal ontology gives precise mathematical formulations of the properties and relations of certain entities. Such theories usually propose axioms about these entities in question, represented as mathematical models or in some formal language based on some system of formal logic.