Goto

Collaborating Authors

 Ontologies


Comparison of Metadata Representation Models for Knowledge Graph Embeddings

arXiv.org Artificial Intelligence

Hyper-relational Knowledge Graphs (HRKGs) extend traditional KGs beyond binary relations, enabling the representation of contextual, provenance, and temporal information in domains, such as historical events, sensor data, video content, and narratives. HRKGs can be structured using several Metadata Representation Models (MRMs), including Reification (REF), Singleton Property (SGP), and RDF-star (RDR). However, the effects of different MRMs on KG Embedding (KGE) and Link Prediction (LP) models remain unclear. This study evaluates MRMs in the context of LP tasks, identifies the limitations of existing evaluation frameworks, and introduces a new task that ensures fair comparisons across MRMs. Furthermore, we propose a framework that effectively reflects the knowledge representations of the three MRMs in latent space. Experiments on two types of datasets reveal that REF performs well in simple HRKGs, whereas SGP is less effective. However, in complex HRKGs, the differences among MRMs in the LP tasks are minimal. Our findings contribute to an optimal knowledge representation strategy for HRKGs in LP tasks.


BTS: Building Timeseries Dataset: Empowering Large-Scale Building Analytics

Neural Information Processing Systems

Buildings play a crucial role in human well-being, influencing occupant comfort, health, and safety. Additionally, they contribute significantly to global energy consumption, accounting for one-third of total energy usage, and carbon emissions. Optimizing building performance presents a vital opportunity to combat climate change and promote human flourishing. However, research in building analytics has been hampered by the lack of accessible, available, and comprehensive realworld datasets on multiple building operations. In this paper, we introduce the Building TimeSeries (BTS) dataset. Our dataset covers three buildings over a three-year period, comprising more than ten thousand timeseries data points with hundreds of unique classes. Moreover, the metadata is standardized using the Brick schema. To demonstrate the utility of this dataset, we performed benchmarks on the multi-label timeseries classification task. This task represent an essential initial step in addressing challenges related to interoperability in building analytics.



PVLens: Enhancing Pharmacovigilance Through Automated Label Extraction

arXiv.org Artificial Intelligence

Reliable drug safety reference databases are essential for pharmacovigilance, yet existing resources like SIDER are outdated and static. We introduce PVLens, an automated system that extracts labeled safety information from FDA Structured Product Labels (SPLs) and maps terms to MedDRA. In validation against 97 drug labels, PVLens achieved an F1 score of 0.882, with high recall (0.983) and moderate precision (0.799). By offering a scalable, more accurate and continuously updated alternative to SIDER, PVLens enhances real-time pharamcovigilance with improved accuracy and contemporaneous insights. Keywords: Pharmacovigilance, Natural Language Processing (NLP), Drug Safety, ADR 1 Introduction A clear understanding of known adverse effects, along with continuous surveillance for emerging safety concerns, is essential for patients, healthcare professionals, and pharmacovigilance (PV) scientists.


OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment

arXiv.org Artificial Intelligence

Ontology Alignment (OA) is fundamental for achieving semantic interoperability across diverse knowledge systems. We present OntoAligner, a comprehensive, modular, and robust Python toolkit for ontology alignment, designed to address current limitations with existing tools faced by practitioners. Existing tools are limited in scalability, modularity, and ease of integration with recent AI advances. OntoAligner provides a flexible architecture integrating existing lightweight OA techniques such as fuzzy matching but goes beyond by supporting contemporary methods with retrieval-augmented generation and large language models for OA. The framework prioritizes extensibility, enabling researchers to integrate custom alignment algorithms and datasets. This paper details the design principles, architecture, and implementation of the OntoAligner, demonstrating its utility through benchmarks on standard OA tasks. Our evaluation highlights OntoAligner's ability to handle large-scale ontologies efficiently with few lines of code while delivering high alignment quality. By making OntoAligner open-source, we aim to provide a resource that fosters innovation and collaboration within the OA community, empowering researchers and practitioners with a toolkit for reproducible OA research and real-world applications.


Enhancing Domain-Specific Encoder Models with LLM-Generated Data: How to Leverage Ontologies, and How to Do Without Them

arXiv.org Artificial Intelligence

We investigate the use of LLM-generated data for continual pretraining of encoder models in specialized domains with limited training data, using the scientific domain of invasion biology as a case study. To this end, we leverage domain-specific ontologies by enriching them with LLM-generated data and pretraining the encoder model as an ontology-informed embedding model for concept definitions. To evaluate the effectiveness of this method, we compile a benchmark specifically designed for assessing model performance in invasion biology. After demonstrating substantial improvements over standard LLM pretraining, we investigate the feasibility of applying the proposed approach to domains without comprehensive ontologies by substituting ontological concepts with concepts automatically extracted from a small corpus of scientific abstracts and establishing relationships between concepts through distributional statistics. Our results demonstrate that this automated approach achieves comparable performance using only a small set of scientific abstracts, resulting in a fully automated pipeline for enhancing domain-specific understanding of small encoder models that is especially suited for application in low-resource settings and achieves performance comparable to masked language modeling pretraining on much larger datasets.


SM3-Text-to-Query: Synthetic Multi-Model Medical Text-to-Query Benchmark

Neural Information Processing Systems

Electronic health records (EHRs) are stored in various database systems with different database models on heterogeneous storage architectures, such as relational databases, document stores, or graph databases. These different database models have a big impact on query complexity and performance. While this has been a known fact in database research, its implications for the growing number of Text-to-Query systems have surprisingly not been investigated so far. In this paper, we present SM3-Text-to-Query, the first multi-model medical Text-to-Query benchmark based on synthetic patient data from Synthea, following the SNOMED-CT taxonomy--a widely used knowledge graph ontology covering medical terminology. SM3-Text-to-Query provides data representations for relational databases (PostgreSQL), document stores (MongoDB), and graph databases (Neo4j and GraphDB (RDF)), allowing the evaluation across four popular query languages, namely SQL, MQL, Cypher, and SPARQL. We systematically and manually develop 408 template questions, which we augment to construct a benchmark of 10K diverse natural language question/query pairs for these four query languages (40K pairs overall). On our dataset, we evaluate several common in-context-learning (ICL) approaches for a set of representative closed and open-source LLMs.


End-to-End Ontology Learning with Large Language Models

Neural Information Processing Systems

Ontologies are useful for automatic machine processing of domain knowledge as they represent it in a structured format. Yet, constructing ontologies requires substantial manual effort. To automate part of this process, large language models (LLMs) have been applied to solve various subtasks of ontology learning. However, this partial ontology learning does not capture the interactions between subtasks. We address this gap by introducing OLLM, a general and scalable method for building the taxonomic backbone of an ontology from scratch.


A Data Analysis

Neural Information Processing Systems

All ontology-based individual objects are housed within the blender file. For rendering an object in the final image, it is positioned in predefined locations on the scene. Specifically, we designated ten empty positions, such as varied table locations in the scene. To make this object visible in the final image, the script will copy this object and place it in one of the ten positions. Each question and answer group has a unique list of corresponding visuals used for image creation.