Goto

Collaborating Authors

 Model-Based Reasoning


FastGrasp: Efficient Grasp Synthesis with Diffusion

arXiv.org Artificial Intelligence

Effectively modeling the interaction between human hands and objects is challenging due to the complex physical constraints and the requirement for high generation efficiency in applications. Prior approaches often employ computationally intensive two-stage approaches, which first generate an intermediate representation, such as contact maps, followed by an iterative optimization procedure that updates hand meshes to capture the hand-object relation. However, due to the high computation complexity during the optimization stage, such strategies often suffer from low efficiency in inference. To address this limitation, this work introduces a novel diffusion-model-based approach that generates the grasping pose in a one-stage manner. This allows us to significantly improve generation speed and the diversity of generated hand poses. In particular, we develop a Latent Diffusion Model with an Adaptation Module for object-conditioned hand pose generation and a contact-aware loss to enforce the physical constraints between hands and objects. Extensive experiments demonstrate that our method achieves faster inference, higher diversity, and superior pose quality than state-of-the-art approaches. Code is available at \href{https://github.com/wuxiaofei01/FastGrasp}{https://github.com/wuxiaofei01/FastGrasp.}


Differentiable Physics-based System Identification for Robotic Manipulation of Elastoplastic Materials

arXiv.org Artificial Intelligence

Robotic manipulation of volumetric elastoplastic deformable materials, from foods such as dough to construction materials like clay, is in its infancy, largely due to the difficulty of modelling and perception in a high-dimensional space. Simulating the dynamics of such materials is computationally expensive. It tends to suffer from inaccurately estimated physics parameters of the materials and the environment, impeding high-precision manipulation. Estimating such parameters from raw point clouds captured by optical cameras suffers further from heavy occlusions. To address this challenge, this work introduces a novel Differentiable Physics-based System Identification (DPSI) framework that enables a robot arm to infer the physics parameters of elastoplastic materials and the environment using simple manipulation motions and incomplete 3D point clouds, aligning the simulation with the real world. Extensive experiments show that with only a single real-world interaction, the estimated parameters, Young's modulus, Poisson's ratio, yield stress and friction coefficients, can accurately simulate visually and physically realistic deformation behaviours induced by unseen and long-horizon manipulation motions. Additionally, the DPSI framework inherently provides physically intuitive interpretations for the parameters in contrast to black-box approaches such as deep neural networks.


Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback

arXiv.org Artificial Intelligence

Accurate motion control in the face of disturbances within complex environments remains a major challenge in robotics. Classical model-based approaches often struggle with nonlinearities and unstructured disturbances, while RL-based methods can be fragile when encountering unseen scenarios. In this paper, we propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness. Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities. This internal model combines model-free RL algorithms with predictive error feedback. Such a design enables a closed-loop control structure to enhance the robustness and generalizability of the control system. We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods. Furthermore, real-world deployment on a quadrotor with rope-suspended payloads highlights the framework's robustness in sim-to-real transfer. Our code is released at https://github.com/thu-uav/NeuralIMC.


A Fast and Model Based Approach for Evaluating Task-Competence of Antagonistic Continuum Arms

arXiv.org Artificial Intelligence

Soft robot arms have made significant progress towards completing human-scale tasks, but designing arms for tasks with specific load and workspace requirements remains difficult. A key challenge is the lack of model-based design tools, forcing advancement to occur through empirical iteration and observation. Existing models are focused on control and rely on parameter fits, which means they cannot provide general conclusions about the mapping between design and performance or the influence of factors outside the fitting data. As a first step toward model-based design tools, we introduce a novel method of analyzing whether a proposed arm design can complete desired tasks. Our method is informative, interpretable, and fast; it provides novel metrics for quantifying a proposed arm design's ability to perform a task, it yields a graphical interpretation of performance through segment forces, and computing it is over 80x faster than optimization based methods. Our formulation focuses on antagonistic, pneumatically-driven soft arms. We demonstrate our approach through example analysis, and also through consideration of antagonistic vs non-antagonistic designs. Our method enables fast, direct and task-specific comparison of these two architectures, and provides a new visualization of the comparative mechanics. While only a first step, the proposed approach will support advancement of model-based design tools, leading to highly capable soft arms.


Causal reasoning in difference graphs

arXiv.org Artificial Intelligence

In epidemiology, understanding causal mechanisms across different populations is essential for designing effective public health interventions. Recently, difference graphs have been introduced as a tool to visually represent causal variations between two distinct populations. While there has been progress in inferring these graphs from data through causal discovery methods, there remains a gap in systematically leveraging their potential to enhance causal reasoning. This paper addresses that gap by establishing conditions for identifying causal changes and effects using difference graphs and observational data. It specifically focuses on identifying total causal changes and total effects in a nonparametric framework, as well as direct causal changes and direct effects in a linear context. In doing so, it provides a novel approach to causal reasoning that holds potential for various public health applications.


Combining Physics-based and Data-driven Modeling for Building Energy Systems

arXiv.org Artificial Intelligence

Building energy modeling plays a vital role in optimizing the operation of building energy systems by providing accurate predictions of the building's real-world conditions. In this context, various techniques have been explored, ranging from traditional physics-based models to data-driven models. Recently, researchers are combining physics-based and data-driven models into hybrid approaches. This includes using the physics-based model output as additional data-driven input, learning the residual between physics-based model and real data, learning a surrogate of the physics-based model, or fine-tuning a surrogate model with real data. However, a comprehensive comparison of the inherent advantages of these hybrid approaches is still missing. The primary objective of this work is to evaluate four predominant hybrid approaches in building energy modeling through a real-world case study, with focus on indoor temperature dynamics. To achieve this, we devise three scenarios reflecting common levels of building documentation and sensor availability, assess their performance, and analyse their explainability using hierarchical Shapley values. The real-world study reveals three notable findings. First, greater building documentation and sensor availability lead to higher prediction accuracy for hybrid approaches. Second, the performance of hybrid approaches depend on the type of building room, but the residual approach using a Feedforward Neural Network as data-driven sub-model performs best on average across all rooms. This hybrid approach also demonstrates a superior ability to leverage the physics-based simulation from the physics-based sub-model. Third, hierarchical Shapley values prove to be an effective tool for explaining and improving hybrid models while accounting for input correlations.


DeMuVGN: Effective Software Defect Prediction Model by Learning Multi-view Software Dependency via Graph Neural Networks

arXiv.org Artificial Intelligence

Software defect prediction (SDP) aims to identify high-risk defect modules in software development, optimizing resource allocation. While previous studies show that dependency network metrics improve defect prediction, most methods focus on code-based dependency graphs, overlooking developer factors. Current metrics, based on handcrafted features like ego and global network metrics, fail to fully capture defect-related information. To address this, we propose DeMuVGN, a defect prediction model that learns multi-view software dependency via graph neural networks. We introduce a Multi-view Software Dependency Graph (MSDG) that integrates data, call, and developer dependencies. DeMuVGN also leverages the Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance and enhance defect module identification. In a case study of eight open-source projects across 20 versions, DeMuVGN demonstrates significant improvements: i) models based on multi-view graphs improve F1 scores by 11.1% to 12.1% over single-view models; ii) DeMuVGN improves F1 scores by 17.4% to 45.8% in within-project contexts and by 17.9% to 41.0% in cross-project contexts. Additionally, DeMuVGN excels in software evolution, showing more improvement in later-stage software versions. Its strong performance across different projects highlights its generalizability. We recommend future research focus on multi-view dependency graphs for defect prediction in both mature and newly developed projects.


From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning

arXiv.org Artificial Intelligence

Physics-Informed Neural Networks (PINNs) have emerged as a key tool in Scientific Machine Learning since their introduction in 2017, enabling the efficient solution of ordinary and partial differential equations using sparse measurements. Over the past few years, significant advancements have been made in the training and optimization of PINNs, covering aspects such as network architectures, adaptive refinement, domain decomposition, and the use of adaptive weights and activation functions. A notable recent development is the Physics-Informed Kolmogorov-Arnold Networks (PIKANS), which leverage a representation model originally proposed by Kolmogorov in 1957, offering a promising alternative to traditional PINNs. In this review, we provide a comprehensive overview of the latest advancements in PINNs, focusing on improvements in network design, feature expansion, optimization techniques, uncertainty quantification, and theoretical insights. We also survey key applications across a range of fields, including biomedicine, fluid and solid mechanics, geophysics, dynamical systems, heat transfer, chemical engineering, and beyond. Finally, we review computational frameworks and software tools developed by both academia and industry to support PINN research and applications.


Multifidelity Kolmogorov-Arnold Networks

arXiv.org Artificial Intelligence

In recent years, scientific machine learning (SciML) has emerged as a paradigm for modeling physical systems [1, 2, 3]. Typically using the theory of multilayer perceptrons (MLPs), SciML has shown great success in modeling a wide range of applications, however, data-informed training struggles when high-quality data is not available. Kolmogorov-Arnold networks (KANs) have recently been developed as an alternative to MLPs [4, 5]. KANs use the Kolmogorov-Arnold Theorem as inspiration and can offer advantages over MLPs in some cases, such as for discovering interpretable models. However, KANs have been shown to struggle to reach the accuracy of MLPs, particularly without modifications [6, 7, 8, 9]. In the short time since the publication of [4], many variations of KANs have been developed, including physics-informed KANs (PIKANs)[9], KAN-informed neural networks (KINNs)[10], temporal KANs [11], wavelet KANs [12], graph KANs [13, 14, 15], Chebyshev KANs (cKANs) [16], convolutional KANs [17], ReLU-KANs [18], Higher-order-ReLU-KANs (HRKANs) [19], fractional KANs [20], finite basis KANs [21], deep operator KANs [22], and others.


Physics-Informed Learning for the Friction Modeling of High-Ratio Harmonic Drives

arXiv.org Artificial Intelligence

This paper presents a scalable method for friction identification in robots equipped with electric motors and high-ratio harmonic drives, utilizing Physics-Informed Neural Networks (PINN). This approach eliminates the need for dedicated setups and joint torque sensors by leveraging the robo\v{t}s intrinsic model and state data. We present a comprehensive pipeline that includes data acquisition, preprocessing, ground truth generation, and model identification. The effectiveness of the PINN-based friction identification is validated through extensive testing on two different joints of the humanoid robot ergoCub, comparing its performance against traditional static friction models like the Coulomb-viscous and Stribeck-Coulomb-viscous models. Integrating the identified PINN-based friction models into a two-layer torque control architecture enhances real-time friction compensation. The results demonstrate significant improvements in control performance and reductions in energy losses, highlighting the scalability and robustness of the proposed method, also for application across a large number of joints as in the case of humanoid robots.