Goto

Collaborating Authors

 Expert Systems


G: Reasoning through Dynamic Knowledge Encoding Zeming Chen 1 Gail Weiss 1

Neural Information Processing Systems

Recent studies on transformer-based language models show that they can answer questions by reasoning over knowledge provided as part of the context (i.e., incontext reasoning). However, since the available knowledge is often not filtered for a particular question, in-context reasoning can be sensitive to distractor facts, additional content that is irrelevant to a question but that may be relevant for a different question (i.e., not necessarily random noise). In these situations, the model fails to distinguish the necessary knowledge to answer the question, leading to spurious reasoning and degraded performance. This reasoning failure contrasts with the model's apparent ability to distinguish its contextual knowledge from all the knowledge it has memorized during pre-training. Following this observation, we propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters before presenting it with a question.


Learning Interpretable Decision Rule Sets: A Submodular Optimization Approach

Neural Information Processing Systems

Rule sets are highly interpretable logical models in which the predicates for decision are expressed in disjunctive normal form (DNF, OR-of-ANDs), or, equivalently, the overall model comprises an unordered collection of if-then decision rules. In this paper, we consider a submodular optimization based approach for learning rule sets. The learning problem is framed as a subset selection task in which a subset of all possible rules needs to be selected to form an accurate and interpretable rule set. We employ an objective function that exhibits submodularity and thus is amenable to submodular optimization techniques. To overcome the difficulty arose from dealing with the exponential-sized ground set of rules, the subproblem of searching a rule is casted as another subset selection task that asks for a subset of features. We show it is possible to write the induced objective function for the subproblem as a difference of two submodular (DS) functions to make it approximately solvable by DS optimization algorithms. Overall, the proposed approach is simple, scalable, and likely to be benefited from further research on submodular optimization. Experiments on real datasets demonstrate the effectiveness of our method.



DDXPlus: A New Dataset For Automatic Medical Diagnosis

Neural Information Processing Systems

There has been a rapidly growing interest in Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the machine learning research literature, aiming to assist doctors in telemedicine services. These systems are designed to interact with patients, collect evidence about their symptoms and relevant antecedents, and possibly make predictions about the underlying diseases. Doctors would review the interactions, including the evidence and the predictions, collect if necessary additional information from patients, before deciding on next steps. Despite recent progress in this area, an important piece of doctors' interactions with patients is missing in the design of these systems, namely the differential diagnosis. Its absence is largely due to the lack of datasets that include such information for models to train on. In this work, we present a large-scale synthetic dataset of roughly 1.3 million patients that includes a differential diagnosis, along with the ground truth pathology, symptoms and antecedents for each patient. Unlike existing datasets which only contain binary symptoms and antecedents, this dataset also contains categorical and multi-choice symptoms and antecedents useful for efficient data collection. Moreover, some symptoms are organized in a hierarchy, making it possible to design systems able to interact with patients in a logical way. As a proof-of-concept, we extend two existing AD and ASD systems to incorporate the differential diagnosis, and provide empirical evidence that using differentials as training signals is essential for the efficiency of such systems or for helping doctors better understand the reasoning of those systems.


Instance-based Learning for Knowledge Base Completion Shanghai University of Finance and Economics 1 University of Michigan

Neural Information Processing Systems

In this paper, we propose a new method for knowledge base completion (KBC): instance-based learning (IBL). For example, to answer (Jill Biden, lived city,?), instead of going directly to Washington D.C., our goal is to find Joe Biden, who has the same lived city as Jill Biden. Through prototype entities, IBL provides interpretability. We develop theories for modeling prototypes and combining IBL with translational models. Experiments on various tasks confirmed the IBL model's effectiveness and interpretability. In addition, IBL shed light on the mechanism of rule-based KBC models. Previous research has generally agreed that rule-based models provide rules with semantically compatible premises and hypotheses.



Supplementary Material of ST RK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases

Neural Information Processing Systems

Code: We release a PyPI package, stark-qa (https://pypi.org/project/stark-qa/). The Croissant metadata for our dataset is available for viewing and downloading at https://stark.stanford.edu/files/croissant_metadata.json. We provide a persistent dereferenceable identifier DOI: https://doi.org/10.57967/hf/2530. RK retrieval datasets are under license CC-BY-4.0 as stated in our website. And our released code is under MIT license, as stated in the GitHub repository. We plan to update our website with the most recent document and Python package. We will maintain our GitHub repository will pull requests and open issues. We hereby confirm that we bear all responsibility for any violation of rights that may occur in the use or distribution of the data and content presented in this work. We affirm that we have obtained all necessary permissions and licenses for the data and content included in this work. We confirm that the use of this data complies with all relevant laws and regulations, and we take full responsibility for addressing any claims or disputes that may arise regarding rights violations or licensing issues.


Unlocking the Potential of Global Human Expertise Elliot Meyerson 1 Olivier Francon 1 Darren Sargent

Neural Information Processing Systems

Solving societal problems on a global scale requires the collection and processing of ideas and methods from diverse sets of international experts. As the number and diversity of human experts increase, so does the likelihood that elements in this collective knowledge can be combined and refined to discover novel and better solutions. However, it is difficult to identify, combine, and refine complementary information in an increasingly large and diverse knowledge base. This paper argues that artificial intelligence (AI) can play a crucial role in this process. An evolutionary AI framework, termed RHEA, fills this role by distilling knowledge from diverse models created by human experts into equivalent neural networks, which are then recombined and refined in a population-based search. The framework was implemented in a formal synthetic domain, demonstrating that it is transparent and systematic. It was then applied to the results of the XPRIZE Pandemic Response Challenge, in which over 100 teams of experts across 23 countries submitted models based on diverse methodologies to predict COVID-19 cases and suggest non-pharmaceutical intervention policies for 235 nations, states, and regions across the globe. Building upon this expert knowledge, by recombining and refining the 169 resulting policy suggestion models, RHEA discovered a broader and more effective set of policies than either AI or human experts alone, as evaluated based on real-world data. The results thus suggest that AI can play a crucial role in realizing the potential of human expertise in global problem-solving.


Faithful Embeddings for Knowledge Base Queries

Neural Information Processing Systems

The deductive closure of an ideal knowledge base (KB) contains exactly the logical queries that the KB can answer. However, in practice KBs are both incomplete and over-specified, failing to answer some queries that have real-world answers. Query embedding (QE) techniques have been recently proposed where KB entities and KB queries are represented jointly in an embedding space, supporting relaxation and generalization in KB inference. However, experiments in this paper show that QE systems may disagree with deductive reasoning on answers that do not require generalization or relaxation. We address this problem with a novel QE method that is more faithful to deductive reasoning, and show that this leads to better performance on complex queries to incomplete KBs. Finally we show that inserting this new QE module into a neural question-answering system leads to substantial improvements over the state-of-the-art.