Goto

Collaborating Authors

Expert Systems: Instructional Materials


Project Halo: Towards a Digital Aristotle

AI Magazine

Project Halo is a multistaged effort, sponsored by Vulcan Inc, aimed at creating Digital Aristotle, an application that will encompass much of the world's scientific knowledge and be capable of applying sophisticated problem solving to answer novel questions. Vulcan envisions two primary roles for Digital Aristotle: as a tutor to instruct students in the sciences and as an interdisciplinary research assistant to help scientists in their work. As a first step towards this goal, we have just completed a six-month pilot phase designed to assess the state of the art in applied knowledge representation and reasoning (KR&/R). Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications.


Context-aware Non-linear and Neural Attentive Knowledge-based Models for Grade Prediction

arXiv.org Machine Learning

Grade prediction for future courses not yet taken by students is important as it can help them and their advisers during the process of course selection as well as for designing personalized degree plans and modifying them based on their performance. One of the successful approaches for accurately predicting a student's grades in future courses is Cumulative Knowledge-based Regression Models (CKRM). CKRM learns shallow linear models that predict a student's grades as the similarity between his/her knowledge state and the target course. However, prior courses taken by a student can have \black{different contributions when estimating a student's knowledge state and towards each target course, which} cannot be captured by linear models. Moreover, CKRM and other grade prediction methods ignore the effect of concurrently-taken courses on a student's performance in a target course. In this paper, we propose context-aware non-linear and neural attentive models that can potentially better estimate a student's knowledge state from his/her prior course information, as well as model the interactions between a target course and concurrent courses. Compared to the competing methods, our experiments on a large real-world dataset consisting of more than $1.5$M grades show the effectiveness of the proposed models in accurately predicting students' grades. Moreover, the attention weights learned by the neural attentive model can be helpful in better designing their degree plans.


Reasoning-Driven Question-Answering for Natural Language Understanding

arXiv.org Artificial Intelligence

Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Lie on the Fly: Strategic Voting in an Iterative Preference Elicitation Process

arXiv.org Artificial Intelligence

A voting center is in charge of collecting and aggregating voter preferences. In an iterative process, the center sends comparison queries to voters, requesting them to submit their preference between two items. Voters might discuss the candidates among themselves, figuring out during the elicitation process which candidates stand a chance of winning and which do not. Consequently, strategic voters might attempt to manipulate by deviating from their true preferences and instead submit a different response in order to attempt to maximize their profit. We provide a practical algorithm for strategic voters which computes the best manipulative vote and maximizes the voter's selfish outcome when such a vote exists. We also provide a careful voting center which is aware of the possible manipulations and avoids manipulative queries when possible. In an empirical study on four real-world domains, we show that in practice manipulation occurs in a low percentage of settings and has a low impact on the final outcome. The careful voting center reduces manipulation even further, thus allowing for a non-distorted group decision process to take place. We thus provide a core technology study of a voting process that can be adopted in opinion or information aggregation systems and in crowdsourcing applications, e.g., peer grading in Massive Open Online Courses (MOOCs).


Artificial Intelligence : from Research to Application ; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2019)

arXiv.org Artificial Intelligence

The TriRhenaTech alliance universities and their partners presented their competences in the field of artificial intelligence and their cross-border cooperations with the industry at the tri-national conference 'Artificial Intelligence : from Research to Application' on March 13th, 2019 in Offenburg. The TriRhenaTech alliance is a network of universities in the Upper Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI

arXiv.org Artificial Intelligence

This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions.


A Graduate-Level Expert Systems Course

AI Magazine

The course size is limited to 20. It is run as a 14-week course, with one 3-hour class per week. One goal of the course is to examine a number of expert, knowledgebased, problem-solving systems, looking at each system in some depth. Another important goal is to make comparisons across systems in a domain-independent way. An attempt is made to relate systems by their problem-solving capabilities rather than merely by the AI techniques used.


Medical Decision Support

AITopics Original Links

This course presents the main concepts of decision analysis, artificial intelligence, and predictive model construction and evaluation in the specific context of medical applications. The advantages and disadvantages of using these methods in real-world systems are emphasized, while students gain hands-on experience with application specific methods. The technical focus of the course includes decision analysis, knowledge-based systems (qualitative and quantitative), learning systems (including logistic regression, classification trees, neural networks), and techniques to evaluate the performance of such systems.


Design of an Online Course on Knowledge-Based AI

AAAI Conferences

In Fall 2014 we offered an online course on Knowledge-Based Artificial Intelligence (KBAI) to about 200 students as part of the Georgia Tech Online MS in CS program. By now we have offered the course to more than 1000 students. We describe the design, development and delivery of the online KBAI class in Fall 2014.