Goto

Collaborating Authors

Expert Systems: Overviews


Knowledge Engineering in the Long Game of Artificial Intelligence: The Case of Speech Acts

arXiv.org Artificial Intelligence

This paper describes principles and practices of knowledge engineering that enable the development of holistic language-endowed intelligent agents that can function across domains and applications, as well as expand their ontological and lexical knowledge through lifelong learning. For illustration, we focus on dialog act modeling, a task that has been widely pursued in linguistics, cognitive modeling, and statistical natural language processing. We describe an integrative approach grounded in the OntoAgent knowledge-centric cognitive architecture and highlight the limitations of past approaches that isolate dialog from other agent functionalities.


A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and Challenges

arXiv.org Artificial Intelligence

This is Part II of the two-part comprehensive survey devoted to a computing framework most commonly known under the names Hyperdimensional Computing and Vector Symbolic Architectures (HDC/VSA). Both names refer to a family of computational models that use high-dimensional distributed representations and rely on the algebraic properties of their key operations to incorporate the advantages of structured symbolic representations and vector distributed representations. Holographic Reduced Representations is an influential HDC/VSA model that is well-known in the machine learning domain and often used to refer to the whole family. However, for the sake of consistency, we use HDC/VSA to refer to the area. Part I of this survey covered foundational aspects of the area, such as historical context leading to the development of HDC/VSA, key elements of any HDC/VSA model, known HDC/VSA models, and transforming input data of various types into high-dimensional vectors suitable for HDC/VSA. This second part surveys existing applications, the role of HDC/VSA in cognitive computing and architectures, as well as directions for future work. Most of the applications lie within the machine learning/artificial intelligence domain, however we also cover other applications to provide a thorough picture. The survey is written to be useful for both newcomers and practitioners.


Systems Challenges for Trustworthy Embodied Systems

arXiv.org Artificial Intelligence

A new generation of increasingly autonomous and self-learning systems, which we call embodied systems, is about to be developed. When deploying these systems into a real-life context we face various engineering challenges, as it is crucial to coordinate the behavior of embodied systems in a beneficial manner, ensure their compatibility with our human-centered social values, and design verifiably safe and reliable human-machine interaction. We are arguing that raditional systems engineering is coming to a climacteric from embedded to embodied systems, and with assuring the trustworthiness of dynamic federations of situationally aware, intent-driven, explorative, ever-evolving, largely non-predictable, and increasingly autonomous embodied systems in uncertain, complex, and unpredictable real-world contexts. We are also identifying a number of urgent systems challenges for trustworthy embodied systems, including robust and human-centric AI, cognitive architectures, uncertainty quantification, trustworthy self-integration, and continual analysis and assurance.


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


What is Event Knowledge Graph: A Survey

arXiv.org Artificial Intelligence

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.


Low-resource Learning with Knowledge Graphs: A Comprehensive Survey

arXiv.org Artificial Intelligence

Machine learning methods especially deep neural networks have achieved great success but many of them often rely on a number of labeled samples for training. In real-world applications, we often need to address sample shortage due to e.g., dynamic contexts with emerging prediction targets and costly sample annotation. Therefore, low-resource learning, which aims to learn robust prediction models with no enough resources (especially training samples), is now being widely investigated. Among all the low-resource learning studies, many prefer to utilize some auxiliary information in the form of Knowledge Graph (KG), which is becoming more and more popular for knowledge representation, to reduce the reliance on labeled samples. In this survey, we very comprehensively reviewed over $90$ papers about KG-aware research for two major low-resource learning settings -- zero-shot learning (ZSL) where new classes for prediction have never appeared in training, and few-shot learning (FSL) where new classes for prediction have only a small number of labeled samples that are available. We first introduced the KGs used in ZSL and FSL studies as well as the existing and potential KG construction solutions, and then systematically categorized and summarized KG-aware ZSL and FSL methods, dividing them into different paradigms such as the mapping-based, the data augmentation, the propagation-based and the optimization-based. We next presented different applications, including not only KG augmented tasks in Computer Vision and Natural Language Processing (e.g., image classification, text classification and knowledge extraction), but also tasks for KG curation (e.g., inductive KG completion), and some typical evaluation resources for each task. We eventually discussed some challenges and future directions on aspects such as new learning and reasoning paradigms, and the construction of high quality KGs.


A Brief History of Updates of Answer-Set Programs

arXiv.org Artificial Intelligence

Over the last couple of decades, there has been a considerable effort devoted to the problem of updating logic programs under the stable model semantics (a.k.a. answer-set programs) or, in other words, the problem of characterising the result of bringing up-to-date a logic program when the world it describes changes. Whereas the state-of-the-art approaches are guided by the same basic intuitions and aspirations as belief updates in the context of classical logic, they build upon fundamentally different principles and methods, which have prevented a unifying framework that could embrace both belief and rule updates. In this paper, we will overview some of the main approaches and results related to answer-set programming updates, while pointing out some of the main challenges that research in this topic has faced.


Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies

arXiv.org Artificial Intelligence

As AI systems demonstrate increasingly strong predictive performance, their adoption has grown in numerous domains. However, in high-stakes domains such as criminal justice and healthcare, full automation is often not desirable due to safety, ethical, and legal concerns, yet fully manual approaches can be inaccurate and time consuming. As a result, there is growing interest in the research community to augment human decision making with AI assistance. Besides developing AI technologies for this purpose, the emerging field of human-AI decision making must embrace empirical approaches to form a foundational understanding of how humans interact and work with AI to make decisions. To invite and help structure research efforts towards a science of understanding and improving human-AI decision making, we survey recent literature of empirical human-subject studies on this topic. We summarize the study design choices made in over 100 papers in three important aspects: (1) decision tasks, (2) AI models and AI assistance elements, and (3) evaluation metrics. For each aspect, we summarize current trends, discuss gaps in current practices of the field, and make a list of recommendations for future research. Our survey highlights the need to develop common frameworks to account for the design and research spaces of human-AI decision making, so that researchers can make rigorous choices in study design, and the research community can build on each other's work and produce generalizable scientific knowledge. We also hope this survey will serve as a bridge for HCI and AI communities to work together to mutually shape the empirical science and computational technologies for human-AI decision making.


Knowledge Graph Embedding in E-commerce Applications: Attentive Reasoning, Explanations, and Transferable Rules

arXiv.org Artificial Intelligence

Knowledge Graphs (KGs), representing facts as triples, have been widely adopted in many applications. Reasoning tasks such as link prediction and rule induction are important for the development of KGs. Knowledge Graph Embeddings (KGEs) embedding entities and relations of a KG into continuous vector spaces, have been proposed for these reasoning tasks and proven to be efficient and robust. But the plausibility and feasibility of applying and deploying KGEs in real-work applications has not been well-explored. In this paper, we discuss and report our experiences of deploying KGEs in a real domain application: e-commerce. We first identity three important desiderata for e-commerce KG systems: 1) attentive reasoning, reasoning over a few target relations of more concerns instead of all; 2) explanation, providing explanations for a prediction to help both users and business operators understand why the prediction is made; 3) transferable rules, generating reusable rules to accelerate the deployment of a KG to new systems. While non existing KGE could meet all these desiderata, we propose a novel one, an explainable knowledge graph attention network that make prediction through modeling correlations between triples rather than purely relying on its head entity, relation and tail entity embeddings. It could automatically selects attentive triples for prediction and records the contribution of them at the same time, from which explanations could be easily provided and transferable rules could be efficiently produced. We empirically show that our method is capable of meeting all three desiderata in our e-commerce application and outperform typical baselines on datasets from real domain applications.