Collaborating Authors

Expert Systems: Overviews

On Exploiting Hitting Sets for Model Reconciliation Artificial Intelligence

In human-aware planning, a planning agent may need to provide an explanation to a human user on why its plan is optimal. A popular approach to do this is called model reconciliation, where the agent tries to reconcile the differences in its model and the human's model such that the plan is also optimal in the human's model. In this paper, we present a logic-based framework for model reconciliation that extends beyond the realm of planning. More specifically, given a knowledge base $KB_1$ entailing a formula $\varphi$ and a second knowledge base $KB_2$ not entailing it, model reconciliation seeks an explanation, in the form of a cardinality-minimal subset of $KB_1$, whose integration into $KB_2$ makes the entailment possible. Our approach, based on ideas originating in the context of analysis of inconsistencies, exploits the existing hitting set duality between minimal correction sets (MCSes) and minimal unsatisfiable sets (MUSes) in order to identify an appropriate explanation. However, differently from those works targeting inconsistent formulas, which assume a single knowledge base, MCSes and MUSes are computed over two distinct knowledge bases. We conclude our paper with an empirical evaluation of the newly introduced approach on planning instances, where we show how it outperforms an existing state-of-the-art solver, and generic non-planning instances from recent SAT competitions, for which no other solver exists.

Knowledge Graphs in Manufacturing and Production: A Systematic Literature Review Artificial Intelligence

Knowledge graphs in manufacturing and production aim to make production lines more efficient and flexible with higher quality output. This makes knowledge graphs attractive for companies to reach Industry 4.0 goals. However, existing research in the field is quite preliminary, and more research effort on analyzing how knowledge graphs can be applied in the field of manufacturing and production is needed. Therefore, we have conducted a systematic literature review as an attempt to characterize the state-of-the-art in this field, i.e., by identifying exiting research and by identifying gaps and opportunities for further research. To do that, we have focused on finding the primary studies in the existing literature, which were classified and analyzed according to four criteria: bibliometric key facts, research type facets, knowledge graph characteristics, and application scenarios. Besides, an evaluation of the primary studies has also been carried out to gain deeper insights in terms of methodology, empirical evidence, and relevance. As a result, we can offer a complete picture of the domain, which includes such interesting aspects as the fact that knowledge fusion is currently the main use case for knowledge graphs, that empirical research and industrial application are still missing to a large extent, that graph embeddings are not fully exploited, and that technical literature is fast-growing but seems to be still far from its peak.

Neurosymbolic AI: The 3rd Wave Artificial Intelligence

Current advances in Artificial Intelligence (AI) and Machine Learning (ML) have achieved unprecedented impact across research communities and industry. Nevertheless, concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers. Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning and for sound explainability. Neural-symbolic computing has been an active area of research for many years seeking to bring together robust learning in neural networks with reasoning and explainability via symbolic representations for network models. In this paper, we relate recent and early research results in neurosymbolic AI with the objective of identifying the key ingredients of the next wave of AI systems. We focus on research that integrates in a principled way neural network-based learning with symbolic knowledge representation and logical reasoning. The insights provided by 20 years of neural-symbolic computing are shown to shed new light onto the increasingly prominent role of trust, safety, interpretability and accountability of AI. We also identify promising directions and challenges for the next decade of AI research from the perspective of neural-symbolic systems.

The Three Ghosts of Medical AI: Can the Black-Box Present Deliver? Artificial Intelligence

Our title alludes to the three Christmas ghosts encountered by Ebenezer Scrooge in \textit{A Christmas Carol}, who guide Ebenezer through the past, present, and future of Christmas holiday events. Similarly, our article will take readers through a journey of the past, present, and future of medical AI. In doing so, we focus on the crux of modern machine learning: the reliance on powerful but intrinsically opaque models. When applied to the healthcare domain, these models fail to meet the needs for transparency that their clinician and patient end-users require. We review the implications of this failure, and argue that opaque models (1) lack quality assurance, (2) fail to elicit trust, and (3) restrict physician-patient dialogue. We then discuss how upholding transparency in all aspects of model design and model validation can help ensure the reliability of medical AI.

A Practical Approach towards Causality Mining in Clinical Text using Active Transfer Learning Artificial Intelligence

Objective: Causality mining is an active research area, which requires the application of state-of-the-art natural language processing techniques. In the healthcare domain, medical experts create clinical text to overcome the limitation of well-defined and schema driven information systems. The objective of this research work is to create a framework, which can convert clinical text into causal knowledge. Methods: A practical approach based on term expansion, phrase generation, BERT based phrase embedding and semantic matching, semantic enrichment, expert verification, and model evolution has been used to construct a comprehensive causality mining framework. This active transfer learning based framework along with its supplementary services, is able to extract and enrich, causal relationships and their corresponding entities from clinical text. Results: The multi-model transfer learning technique when applied over multiple iterations, gains performance improvements in terms of its accuracy and recall while keeping the precision constant. We also present a comparative analysis of the presented techniques with their common alternatives, which demonstrate the correctness of our approach and its ability to capture most causal relationships. Conclusion: The presented framework has provided cutting-edge results in the healthcare domain. However, the framework can be tweaked to provide causality detection in other domains, as well. Significance: The presented framework is generic enough to be utilized in any domain, healthcare services can gain massive benefits due to the voluminous and various nature of its data. This causal knowledge extraction framework can be used to summarize clinical text, create personas, discover medical knowledge, and provide evidence to clinical decision making.

Clustering-based Automatic Construction of Legal Entity Knowledge Base from Contracts Artificial Intelligence

In contract analysis and contract automation, a knowledge base (KB) of legal entities is fundamental for performing tasks such as contract verification, contract generation and contract analytic. However, such a KB does not always exist nor can be produced in a short time. In this paper, we propose a clustering-based approach to automatically generate a reliable knowledge base of legal entities from given contracts without any supplemental references. The proposed method is robust to different types of errors brought by pre-processing such as Optical Character Recognition (OCR) and Named Entity Recognition (NER), as well as editing errors such as typos. We evaluate our method on a dataset that consists of 800 real contracts with various qualities from 15 clients. Compared to the collected ground-truth data, our method is able to recall 84\% of the knowledge.

Explainable AI for Interpretable Credit Scoring Artificial Intelligence

With the ever-growing achievements in Artificial Intelligence (AI) and the recent boosted enthusiasm in Financial Technology (FinTech), applications such as credit scoring have gained substantial academic interest. Credit scoring helps financial experts make better decisions regarding whether or not to accept a loan application, such that loans with a high probability of default are not accepted. Apart from the noisy and highly imbalanced data challenges faced by such credit scoring models, recent regulations such as the right to explanation' introduced by the General Data Protection Regulation (GDPR) and the Equal Credit Opportunity Act (ECOA) have added the need for model interpretability to ensure that algorithmic decisions are understandable and coherent. An interesting concept that has been recently introduced is eXplainable AI (XAI), which focuses on making black-box models more interpretable. In this work, we present a credit scoring model that is both accurate and interpretable. For classification, state-of-the-art performance on the Home Equity Line of Credit (HELOC) and Lending Club (LC) Datasets is achieved using the Extreme Gradient Boosting (XGBoost) model. The model is then further enhanced with a 360-degree explanation framework, which provides different explanations (i.e. Evaluation through the use of functionallygrounded, application-grounded and human-grounded analysis show that the explanations provided are simple, consistent as well as satisfy the six predetermined hypotheses testing for correctness, effectiveness, easy understanding, detail sufficiency and trustworthiness. Credit scoring models are decision models that help lenders decide whether or not to accept a loan application based on the model's expectation of the applicant being capable or not of repaying the financial obligations [1]. Such models are beneficial since they reduce the time needed for the loan approval process, allow loan officers to concentrate on only a percentage of the applications, lead to cost savings, reduce human subjectivity and decrease default risk [2]. There has been a lot of research on this problem, with various Machine Learning (ML) and Artificial Intelligence (AI) techniques proposed. Such techniques might be exceptional in predictive power but are also known as black-box methods since they provide no explanations behind their decisions, making humans unable to interpret them [3]. Therefore, it is highly unlikely that any financial expert is ready to trust the predictions of a model without any sort of justification [4]. With regards to credit scoring, lenders will need to understand the model's predictions to ensure that decisions are made for the correct reasons.

A Data-Driven Study of Commonsense Knowledge using the ConceptNet Knowledge Base Artificial Intelligence

Acquiring commonsense knowledge and reasoning is recognized as an important frontier in achieving general Artificial Intelligence (AI). Recent research in the Natural Language Processing (NLP) community has demonstrated significant progress in this problem setting. Despite this progress, which is mainly on multiple-choice question answering tasks in limited settings, there is still a lack of understanding (especially at scale) of the nature of commonsense knowledge itself. In this paper, we propose and conduct a systematic study to enable a deeper understanding of commonsense knowledge by doing an empirical and structural analysis of the ConceptNet knowledge base. ConceptNet is a freely available knowledge base containing millions of commonsense assertions presented in natural language. Detailed experimental results on three carefully designed research questions, using state-of-the-art unsupervised graph representation learning ('embedding') and clustering techniques, reveal deep substructures in ConceptNet relations, allowing us to make data-driven and computational claims about the meaning of phenomena such as 'context' that are traditionally discussed only in qualitative terms. Furthermore, our methodology provides a case study in how to use data-science and computational methodologies for understanding the nature of an everyday (yet complex) psychological phenomenon that is an essential feature of human intelligence.

Towards Metaheuristics "In the Large" Artificial Intelligence

Following decades of sustained improvement, metaheuristics are one of the great success stories of optimization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to support the development, analysis and comparison of new approaches. We argue that, via principled choice of infrastructure support, the field can pursue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.

Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.