Belief Revision
Exploiting Causality for Selective Belief Filtering in Dynamic Bayesian Networks
Albrecht, Stefano V., Ramamoorthy, Subramanian
Dynamic Bayesian networks (DBNs) are a general model for stochastic processes with partially observed states. Belief filtering in DBNs is the task of inferring the belief state (i.e. the probability distribution over process states) based on incomplete and noisy observations. This can be a hard problem in complex processes with large state spaces. In this article, we explore the idea of accelerating the filtering task by automatically exploiting causality in the process. We consider a specific type of causal relation, called passivity, which pertains to how state variables cause changes in other variables. We present the Passivity-based Selective Belief Filtering (PSBF) method, which maintains a factored belief representation and exploits passivity to perform selective updates over the belief factors. PSBF produces exact belief states under certain assumptions and approximate belief states otherwise, where the approximation error is bounded by the degree of uncertainty in the process. We show empirically, in synthetic processes with varying sizes and degrees of passivity, that PSBF is faster than several alternative methods while achieving competitive accuracy. Furthermore, we demonstrate how passivity occurs naturally in a complex system such as a multi-robot warehouse, and how PSBF can exploit this to accelerate the filtering task.
Exploiting Causality for Selective Belief Filtering in Dynamic Bayesian Networks
Albrecht, Stefano V., Ramamoorthy, Subramanian
Dynamic Bayesian networks (DBNs) are a general model for stochastic processes with partially observed states. Belief filtering in DBNs is the task of inferring the belief state (i.e. the probability distribution over process states) based on incomplete and noisy observations. This can be a hard problem in complex processes with large state spaces. In this article, we explore the idea of accelerating the filtering task by automatically exploiting causality in the process. We consider a specific type of causal relation, called passivity, which pertains to how state variables cause changes in other variables. We present the Passivity-based Selective Belief Filtering (PSBF) method, which maintains a factored belief representation and exploits passivity to perform selective updates over the belief factors. PSBF produces exact belief states under certain assumptions and approximate belief states otherwise, where the approximation error is bounded by the degree of uncertainty in the process. We show empirically, in synthetic processes with varying sizes and degrees of passivity, that PSBF is faster than several alternative methods while achieving competitive accuracy. Furthermore, we demonstrate how passivity occurs naturally in a complex system such as a multi-robot warehouse, and how PSBF can exploit this to accelerate the filtering task.
Goal Recognition Design with Non-Observable Actions
Keren, Sarah (Technion - Israel Institute of Technology) | Gal, Avigdor (Technion - Israel Institute of Technology) | Karpas, Erez (Technion - Israel Institute of Technology)
Goal recognition design involves the offline analysis of goal recognition models by formulating measures that assess the ability to perform goal recognition within a model and finding efficient ways to compute and optimize them. In this work we relax the full observability assumption of earlier work by offering a new generalized model for goal recognition design with non-observable actions. A model with partial observability is relevant to goal recognition applications such as assisted cognition and security, which suffer from reduced observability due to sensor malfunction or lack of sufficient budget. In particular we define a worst case distinctiveness (wcd) measure that represents the maximal number of steps an agent can take in a system before the observed portion of his trajectory reveals his objective. We present a method for calculating wcd based on a novel compilation to classical planning and propose a method to improve the design using sensor placement. Our empirical evaluation shows that the proposed solutions effectively compute and improve wcd.
On the Geometry of Message Passing Algorithms for Gaussian Reciprocal Processes
Reciprocal processes are acausal generalizations of Markov processes introduced by Bernstein in 1932. In the literature, a significant amount of attention has been focused on developing dynamical models for reciprocal processes. Recently, probabilistic graphical models for reciprocal processes have been provided. This opens the way to the application of efficient inference algorithms in the machine learning literature to solve the smoothing problem for reciprocal processes. Such algorithms are known to converge if the underlying graph is a tree. This is not the case for a reciprocal process, whose associated graphical model is a single loop network. The contribution of this paper is twofold. First, we introduce belief propagation for Gaussian reciprocal processes. Second, we establish a link between convergence analysis of belief propagation for Gaussian reciprocal processes and stability theory for differentially positive systems.
Bisimulation and expressivity for conditional belief, degrees of belief, and safe belief
Andersen, Mikkel Birkegaard, Bolander, Thomas, van Ditmarsch, Hans, Jensen, Martin Holm
Plausibility models are Kripke models that agents use to reason about knowledge and belief, both of themselves and of each other. Such models are used to interpret the notions of conditional belief, degrees of belief, and safe belief. The logic of conditional belief contains that modality and also the knowledge modality, and similarly for the logic of degrees of belief and the logic of safe belief. With respect to these logics, plausibility models may contain too much information. A proper notion of bisimulation is required that characterises them. We define that notion of bisimulation and prove the required characterisations: on the class of image-finite and preimage-finite models (with respect to the plausibility relation), two pointed Kripke models are modally equivalent in either of the three logics, if and only if they are bisimilar. As a result, the information content of such a model can be similarly expressed in the logic of conditional belief, or the logic of degrees of belief, or that of safe belief. This, we found a surprising result. Still, that does not mean that the logics are equally expressive: the logics of conditional and degrees of belief are incomparable, the logics of degrees of belief and safe belief are incomparable, while the logic of safe belief is more expressive than the logic of conditional belief. In view of the result on bisimulation characterisation, this is an equally surprising result. We hope our insights may contribute to the growing community of formal epistemology and on the relation between qualitative and quantitative modelling.
Expectation Particle Belief Propagation
Lienart, Thibaut, Teh, Yee Whye, Doucet, Arnaud
We propose an original particle-based implementation of the Loopy Belief Propagation (LPB) algorithm for pairwise Markov Random Fields (MRF) on a continuous state space. The algorithm constructs adaptively efficient proposal distributions approximating the local beliefs at each note of the MRF. This is achieved by considering proposal distributions in the exponential family whose parameters are updated iterately in an Expectation Propagation (EP) framework. The proposed particle scheme provides consistent estimation of the LBP marginals as the number of particles increases. We demonstrate that it provides more accurate results than the Particle Belief Propagation (PBP) algorithm of Ihler and McAllester (2009) at a fraction of the computational cost and is additionally more robust empirically. The computational complexity of our algorithm at each iteration is quadratic in the number of particles. We also propose an accelerated implementation with sub-quadratic computational complexity which still provides consistent estimates of the loopy BP marginal distributions and performs almost as well as the original procedure.
Minimum Weight Perfect Matching via Blossom Belief Propagation
Ahn, Sung-Soo, Park, Sejun, Chertkov, Michael, Shin, Jinwoo
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the respective Linear Programming (LP) relaxation is tight, i.e., no integrality gap is present. However, when LP shows an integrality gap, no model has been known which can be solved systematically via sequential applications of BP. In this paper, we develop the first such algorithm, coined Blossom-BP, for solving the minimum weight matching problem over arbitrary graphs. Each step of the sequential algorithm requires applying BP over a modified graph constructed by contractions and expansions of blossoms, i.e., odd sets of vertices. Our scheme guarantees termination in O(n^2) of BP runs, where n is the number of vertices in the original graph. In essence, the Blossom-BP offers a distributed version of the celebrated Edmonds' Blossom algorithm by jumping at once over many sub-steps with a single BP. Moreover, our result provides an interpretation of the Edmonds' algorithm as a sequence of LPs.
Minimum Weight Perfect Matching via Blossom Belief Propagation
Ahn, Sungsoo, Park, Sejun, Chertkov, Michael, Shin, Jinwoo
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the respective Linear Programming (LP) relaxation is tight, i.e., no integrality gap is present. However, when LP shows an integrality gap, no model has been known which can be solved systematically via sequential applications of BP. In this paper, we develop the first such algorithm, coined Blossom-BP, for solving the minimum weight matching problem over arbitrary graphs. Each step of the sequential algorithm requires applying BP over a modified graph constructed by contractions and expansions of blossoms, i.e., odd sets of vertices. Our scheme guarantees termination in O(n^2) of BP runs, where n is the number of vertices in the original graph. In essence, the Blossom-BP offers a distributed version of the celebrated Edmonds' Blossom algorithm by jumping at once over many sub-steps with a single BP. Moreover, our result provides an interpretation of the Edmonds' algorithm as a sequence of LPs.
Statistical Analysis of Loopy Belief Propagation in Random Fields
Yasuda, Muneki, Kataoka, Shun, Tanaka, Kazuyuki
Loopy belief propagation (LBP), which is equivalent to the Bethe approximation in statistical mechanics, is a message-passing-type inference method that is widely used to analyze systems based on Markov random fields (MRFs). In this paper, we propose a message-passing-type method to analytically evaluate the quenched average of LBP in random fields by using the replica cluster variation method. The proposed analytical method is applicable to general pair-wise MRFs with random fields whose distributions differ from each other and can give the quenched averages of the Bethe free energies over random fields, which are consistent with numerical results. The order of its computational cost is equivalent to that of standard LBP. In the latter part of this paper, we describe the application of the proposed method to Bayesian image restoration, in which we observed that our theoretical results are in good agreement with the numerical results for natural images.
An Extension-Based Approach to Belief Revision in Abstract Argumentation
Diller, Martin (Vienna University of Technology) | Haret, Adrian (Vienna University of Technology) | Linsbichler, Thomas (Vienna University of Technology) | Rümmele, Stefan (Vienna University of Technology) | Woltran, Stefan (Vienna University of Technology)
Argumentation is an inherently dynamic process. Given that argumentation can be viewed as a process as well Consequently, recent years have witnessed tremendous as a product, recent years have seen an increasing number of research efforts towards an understanding of studies on different problems in the dynamics of argumentation how the seminal AGM theory of belief change can frameworks [Baumann, 2012; Bisquert et al., 2011; 2013; be applied to argumentation, in particular for Dung's Boella et al., 2009; Booth et al., 2013; Cayrol et al., 2010; abstract argumentation frameworks (AFs). However, Doutre et al., 2014; Kontarinis et al., 2013; Krümpelmann et none of the attempts has yet succeeded in handling al., 2012; Nouioua and Würbel, 2014; Sakama, 2014]. The the natural situation where the revision of an AF is problem we tackle here is how to revise an AF when some new guaranteed to be representable by an AF as well.