Goto

Collaborating Authors

Belief Revision: Overviews


A Brief History of Updates of Answer-Set Programs

arXiv.org Artificial Intelligence

Over the last couple of decades, there has been a considerable effort devoted to the problem of updating logic programs under the stable model semantics (a.k.a. answer-set programs) or, in other words, the problem of characterising the result of bringing up-to-date a logic program when the world it describes changes. Whereas the state-of-the-art approaches are guided by the same basic intuitions and aspirations as belief updates in the context of classical logic, they build upon fundamentally different principles and methods, which have prevented a unifying framework that could embrace both belief and rule updates. In this paper, we will overview some of the main approaches and results related to answer-set programming updates, while pointing out some of the main challenges that research in this topic has faced.


Goal Recognition over Imperfect Domain Models

arXiv.org Artificial Intelligence

Goal recognition is the problem of recognizing the intended goal of autonomous agents or humans by observing their behavior in an environment. Over the past years, most existing approaches to goal and plan recognition have been ignoring the need to deal with imperfections regarding the domain model that formalizes the environment where autonomous agents behave. In this thesis, we introduce the problem of goal recognition over imperfect domain models, and develop solution approaches that explicitly deal with two distinct types of imperfect domains models: (1) incomplete discrete domain models that have possible, rather than known, preconditions and effects in action descriptions; and (2) approximate continuous domain models, where the transition function is approximated from past observations and not well-defined. We develop novel goal recognition approaches over imperfect domains models by leveraging and adapting existing recognition approaches from the literature. Experiments and evaluation over these two types of imperfect domains models show that our novel goal recognition approaches are accurate in comparison to baseline approaches from the literature, at several levels of observability and imperfections.


Towards the Role of Theory of Mind in Explanation

arXiv.org Artificial Intelligence

Theory of Mind is commonly defined as the ability to attribute mental states (e.g., beliefs, goals) to oneself, and to others. A large body of previous work - from the social sciences to artificial intelligence - has observed that Theory of Mind capabilities are central to providing an explanation to another agent or when explaining that agent's behaviour. In this paper, we build and expand upon previous work by providing an account of explanation in terms of the beliefs of agents and the mechanism by which agents revise their beliefs given possible explanations. We further identify a set of desiderata for explanations that utilize Theory of Mind. These desiderata inform our belief-based account of explanation.


Active Goal Recognition

arXiv.org Artificial Intelligence

To coordinate with other systems, agents must be able to determine what the systems are currently doing and predict what they will be doing in the future---plan and goal recognition. There are many methods for plan and goal recognition, but they assume a passive observer that continually monitors the target system. Real-world domains, where information gathering has a cost (e.g., moving a camera or a robot, or time taken away from another task), will often require a more active observer. We propose to combine goal recognition with other observer tasks in order to obtain \emph{active goal recognition} (AGR). We discuss this problem and provide a model and preliminary experimental results for one form of this composite problem. As expected, the results show that optimal behavior in AGR problems balance information gathering with other actions (e.g., task completion) such as to achieve all tasks jointly and efficiently. We hope that our formulation opens the door for extensive further research on this interesting and realistic problem.


Goal Recognition Design in Deterministic Environments

Journal of Artificial Intelligence Research

Goal recognition design (GRD) facilitates understanding the goals of acting agents through the analysis and redesign of goal recognition models, thus offering a solution for assessing and minimizing the maximal progress of any agent in the model before goal recognition is guaranteed. In a nutshell, given a model of a domain and a set of possible goals, a solution to a GRD problem determines (1) the extent to which actions performed by an agent within the model reveal the agent’s objective; and (2) how best to modify the model so that the objective of an agent can be detected as early as possible. This approach is relevant to any domain in which rapid goal recognition is essential and the model design can be controlled. Applications include intrusion detection, assisted cognition, computer games, and human-robot collaboration. A GRD problem has two components: the analyzed goal recognition setting, and a design model specifying the possible ways the environment in which agents act can be modified so as to facilitate recognition. This work formulates a general framework for GRD in deterministic and partially observable environments, and offers a toolbox of solutions for evaluating and optimizing model quality for various settings. For the purpose of evaluation we suggest the worst case distinctiveness (WCD) measure, which represents the maximal cost of a path an agent may follow before its goal can be inferred by a goal recognition system. We offer novel compilations to classical planning for calculating WCD in settings where agents are bounded-suboptimal. We then suggest methods for minimizing WCD by searching for an optimal redesign strategy within the space of possible modifications, and using pruning to increase efficiency. We support our approach with an empirical evaluation that measures WCD in a variety of GRD settings and tests the efficiency of our compilation-based methods for computing it. We also examine the effectiveness of reducing WCD via redesign and the performance gain brought about by our proposed pruning strategy.


Cost-Based Goal Recognition in Navigational Domains

Journal of Artificial Intelligence Research

Goal recognition is the problem of determining an agent's intent by observing her behaviour. Contemporary solutions for general task-planning relate the probability of a goal to the cost of reaching it. We adapt this approach to goal recognition in the strict context of path-planning. We show (1) that a simpler formula provides an identical result to current state-of-the-art in less than half the time under all but one set of conditions. Further, we prove (2) that the probability distribution based on this technique is independent of an agent's past behaviour and present a revised formula that achieves goal recognition by reference to the agent's starting point and current location only. Building on this, we demonstrate (3) that a Radius of Maximum Probability (i.e., the distance from a goal within which that goal is guaranteed to be the most probable) can be calculated from relative cost-distances between the candidate goals and a start location, without needing to calculate any actual probabilities. In this extended version of earlier work, we generalise our framework to the continuous domain and discuss our results, including the conditions under which our findings can be generalised back to goal recognition in general task-planning.


Visions of a generalized probability theory

arXiv.org Artificial Intelligence

In this Book we argue that the fruitful interaction of computer vision and belief calculus is capable of stimulating significant advances in both fields. From a methodological point of view, novel theoretical results concerning the geometric and algebraic properties of belief functions as mathematical objects are illustrated and discussed in Part II, with a focus on both a perspective 'geometric approach' to uncertainty and an algebraic solution to the issue of conflicting evidence. In Part III we show how these theoretical developments arise from important computer vision problems (such as articulated object tracking, data association and object pose estimation) to which, in turn, the evidential formalism is able to provide interesting new solutions. Finally, some initial steps towards a generalization of the notion of total probability to belief functions are taken, in the perspective of endowing the theory of evidence with a complete battery of estimation and inference tools to the benefit of all scientists and practitioners.


Reasoning about Discrete and Continuous Noisy Sensors and Effectors in Dynamical Systems

arXiv.org Artificial Intelligence

Among the many approaches for reasoning about degrees of belief in the presence of noisy sensing and acting, the logical account proposed by Bacchus, Halpern, and Levesque is perhaps the most expressive. While their formalism is quite general, it is restricted to fluents whose values are drawn from discrete finite domains, as opposed to the continuous domains seen in many robotic applications. In this work, we show how this limitation in that approach can be lifted. By dealing seamlessly with both discrete distributions and continuous densities within a rich theory of action, we provide a very general logical specification of how belief should change after acting and sensing in complex noisy domains.


Logical Formalizations of Commonsense Reasoning: A Survey

Journal of Artificial Intelligence Research

Commonsense reasoning is in principle a central problem in artificial intelligence, but it is a very difficult one. One approach that has been pursued since the earliest days of the field has been to encode commonsense knowledge as statements in a logic-based representation language and to implement commonsense reasoning as some form of logical inference. This paper surveys the use of logic-based representations of commonsense knowledge in artificial intelligence research.


Belief Propagation, Bethe Approximation and Polynomials

arXiv.org Machine Learning

Factor graphs are important models for succinctly representing probability distributions in machine learning, coding theory, and statistical physics. Several computational problems, such as computing marginals and partition functions, arise naturally when working with factor graphs. Belief propagation is a widely deployed iterative method for solving these problems. However, despite its significant empirical success, not much is known about the correctness and efficiency of belief propagation. Bethe approximation is an optimization-based framework for approximating partition functions. While it is known that the stationary points of the Bethe approximation coincide with the fixed points of belief propagation, in general, the relation between the Bethe approximation and the partition function is not well understood. It has been observed that for a few classes of factor graphs, the Bethe approximation always gives a lower bound to the partition function, which distinguishes them from the general case, where neither a lower bound, nor an upper bound holds universally. This has been rigorously proved for permanents and for attractive graphical models. Here we consider bipartite normal factor graphs and show that if the local constraints satisfy a certain analytic property, the Bethe approximation is a lower bound to the partition function. We arrive at this result by viewing factor graphs through the lens of polynomials. In this process, we reformulate the Bethe approximation as a polynomial optimization problem. Our sufficient condition for the lower bound property to hold is inspired by recent developments in the theory of real stable polynomials. We believe that this way of viewing factor graphs and its connection to real stability might lead to a better understanding of belief propagation and factor graphs in general.