Goto

Collaborating Authors

 Belief Revision


Stable Fixed Points of Loopy Belief Propagation Are Local Minima of the Bethe Free Energy

Neural Information Processing Systems

We extend recent work on the connection between loopy belief propagation and the Bethe free energy. Constrained minimization of the Bethe free energy can be turned into an unconstrained saddle-point problem. Both converging double-loop algorithms and standard loopy belief propagation can be inter- preted as attempts to solve this saddle-point problem. Stability analysis then leads us to conclude that stable (cid:12)xed points of loopy belief propagation must be (local) minima of the Bethe free energy. Perhaps surprisingly, the converse need not be the case: minima can be unstable (cid:12)xed points.


Fractional Belief Propagation

Neural Information Processing Systems

We consider loopy belief propagation for approximate inference in prob- abilistic graphical models. A limitation of the standard algorithm is that clique marginals are computed as if there were no loops in the graph. To overcome this limitation, we introduce fractional belief propagation. Fractional belief propagation is formulated in terms of a family of ap- proximate free energies, which includes the Bethe free energy and the naive mean-field free as special cases. Using the linear response correc- tion of the clique marginals, the scale parameters can be tuned.


Attractive People: Assembling Loose-Limbed Models using Non-parametric Belief Propagation

Neural Information Processing Systems

The detection and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes, and the high dimensionality of articulated body mod- els. To cope with these problems we represent the 3D human body as a graphical model in which the relationships between the body parts are represented by conditional probability distributions. We formulate the pose estimation problem as one of probabilistic inference over a graphi- cal model where the random variables correspond to the individual limb parameters (position and orientation). Because the limbs are described by 6-dimensional vectors encoding pose in 3-space, discretization is im- practical and the random variables in our model must be continuous- valued. To approximate belief propagation in such a graph we exploit a recently introduced generalization of the particle filter.


Finding the M Most Probable Configurations using Loopy Belief Propagation

Neural Information Processing Systems

Loopy belief propagation (BP) has been successfully used in a num- ber of di–cult graphical models to flnd the most probable conflgu- ration of the hidden variables. In applications ranging from protein folding to image analysis one would like to flnd not just the best conflguration but rather the top M . While this problem has been solved using the junction tree formalism, in many real world prob- lems the clique size in the junction tree is prohibitively large. In this work we address the problem of flnding the M best conflgura- tions when exact inference is impossible. We start by developing a new exact inference algorithm for calculat- ing the best conflgurations that uses only max-marginals.


Message Errors in Belief Propagation

Neural Information Processing Systems

Belief propagation (BP) is an increasingly popular method of perform- ing approximate inference on arbitrary graphical models. At times, even further approximations are required, whether from quantization or other simplified message representations or from stochastic approxima- tion methods. Introducing such errors into the BP message computations has the potential to adversely affect the solution obtained. We analyze this effect with respect to a particular measure of message error, and show bounds on the accumulation of errors in the system. This leads both to convergence conditions and error bounds in traditional and approximate BP message passing.


Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation

Neural Information Processing Systems

We describe a threedimensional geometric hand model suitable for vi- sual tracking applications. The kinematic constraints implied by the model's joints have a probabilistic structure which is well described by a graphical model. Inference in this model is complicated by the hand's many degrees of freedom, as well as multimodal likelihoods caused by ambiguous image measurements. We use nonparametric belief propaga- tion (NBP) to develop a tracking algorithm which exploits the graph's structure to control complexity, while avoiding costly discretization. While kinematic constraints naturally have a local structure, self occlusions created by the imaging process lead to complex interpenden- cies in color and edgebased likelihood functions.


The Neurodynamics of Belief Propagation on Binary Markov Random Fields

Neural Information Processing Systems

We rigorously establish a close relationship between message passing algorithms and models of neurodynamics by showing that the equations of a continuous Hop- (cid:2)eld network can be derived from the equations of belief propagation on a binary Markov random (cid:2)eld. As Hop(cid:2)eld networks are equipped with a Lyapunov func- tion, convergence is guaranteed. As a consequence, in the limit of many weak con- nections per neuron, Hop(cid:2)eld networks exactly implement a continuous-time vari- ant of belief propagation starting from message initialisations that prevent from running into convergence problems. Our results lead to a better understanding of the role of message passing algorithms in real biological neural networks.


Linear programming analysis of loopy belief propagation for weighted matching

Neural Information Processing Systems

Loopy belief propagation has been employed in a wide variety of applications with great empirical success, but it comes with few theoretical guarantees. In this paper we investigate the use of the max-product form of belief propagation for weighted matching problems on general graphs. We show that max-product converges to the correct answer if the linear programming (LP) relaxation of the weighted matching problem is tight and does not converge if the LP relaxation is loose. This provides an exact characterization of max-product performance and reveals connections to the widely used optimization technique of LP relaxation. In addition, we demonstrate that max-product is effective in solving practical weighted matching problems in a distributed fashion by applying it to the problem of self-organization in sensor networks.


Counting Solution Clusters in Graph Coloring Problems Using Belief Propagation

Neural Information Processing Systems

We show that an important and computationally challenging solution space feature of the graph coloring problem (COL), namely the number of clusters of solutions, can be accurately estimated by a technique very similar to one for counting the number of solutions. This cluster counting approach can be naturally written in terms of a new factor graph derived from the factor graph representing the COL instance. Using a variant of the Belief Propagation inference framework, we can efficiently approximate cluster counts in random COL problems over a large range of graph densities. We illustrate the algorithm on instances with up to 100, 000 vertices. Moreover, we supply a methodology for computing the number of clus- ters exactly using advanced techniques from the knowledge compilation literature.


Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation

Neural Information Processing Systems

We propose a new approach to the analysis of Loopy Belief Propagation (LBP) by establishing a formula that connects the Hessian of the Bethe free energy with the edge zeta function. The formula has a number of theoretical implications on LBP. It is applied to give a sufficient condition that the Hessian of the Bethe free energy is positive definite, which shows non-convexity for graphs with multiple cycles. The formula clarifies the relation between the local stability of a fixed point of LBP and local minima of the Bethe free energy. We also propose a new approach to the uniqueness of LBP fixed point, and show various conditions of uniqueness.