Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation

Neural Information Processing Systems 

We describe a threedimensional geometric hand model suitable for vi- sual tracking applications. The kinematic constraints implied by the model's joints have a probabilistic structure which is well described by a graphical model. Inference in this model is complicated by the hand's many degrees of freedom, as well as multimodal likelihoods caused by ambiguous image measurements. We use nonparametric belief propaga- tion (NBP) to develop a tracking algorithm which exploits the graph's structure to control complexity, while avoiding costly discretization. While kinematic constraints naturally have a local structure, self occlusions created by the imaging process lead to complex interpenden- cies in color and edgebased likelihood functions.