Goto

Collaborating Authors

Automatic Programming


The Launch of GitLab 13.1: Automated DevOps Management & QC Filters

#artificialintelligence

The world's most powerful web-based DevOps lifecycle tool GitLab has released GitLab 13.1 to track coding quality and to stay compliant with the dynamic needs of the DevOps world. GitLab 13.1 is now officially available with extended Alert Management and Automated Coding Reporting features. Those who follow GitLab closely would agree that its acquisition of Gemnasium in 2018 has helped further fortify the security and compliance in open source. The smartest enhancement in GitLab 13.1 is Alert Management; to maintain a record of all application maintenance and to address critical issues in real-time. Simplified Alert Management, Alert Assignments and Slack integration enhance DevOps productivity with faster collaboration and just-in-time principles.


1592

AI Magazine

AR&A techniques have been used to solve a variety of tasks, including automatic programming, constraint satisfaction, design, diagnosis, machine learning, search, planning, reasoning, game playing, scheduling, and theorem proving. The primary purpose of AR&A techniques in such settings is to overcome computational intractability. In addition, AR&A techniques are useful for accelerating learning and summarizing sets of solutions. The Fifth Symposium on Abstraction, Reformulation, and Approximation (SARA-2002) was held from 2 to 4 August 2002, directly after the Eighteenth National Conference on Artificial Intelligence (AAAI-2002). It was chaired by Sven Koenig from the Georgia Institute of Technology and Robert Holte from the University of Alberta (Canada) and held at Kananaskis Mountain Lodge, Kananaskis Village, Alberta (Canada) between Calgary and Banff in the Rocky Mountains.


A Perspective on Automatic Programming

AI Magazine

Most work in automatic programming has focused primarily on the roles of deduction and programming knowledge However, the role played by knowledge of the task domain seems to be at least as important, both for the usability of an automatic programming system and for the feasibility of building one which works on nontrivial problems This perspective has evolved during the course of a variety of studies over the last several years, including detailed examination of existing software for a particular domain (quantitative interpretation of oil well logs) and the implementation of an experimental automatic programming system for that domain The importance of domain knowledge has two important implications: a primary goal of automatic programming research should be to characterize the programming process for specific domains; and a crucial issue to be addressed in these characterizations is the interaction of domain and programming knowledge during program synthesis Used by permission of the International Joint Conferences on Artificial Intelligence; copies of the Proceedings are available from William Kaufmann, Inc, 95 First St., Los Altos, CA 94022 USA. For example, the work of Green (1969) and Waldinger and Lee (1969) in the late 1960s was concerned with the use of a theorem-prover to produce programs. This deductive paradigm continues to be the basis for much research in automatic programming (e.g., Manna & Waldinger 1980, Smith 1983). In the mid 1970's, work on the PSI project (Barstow 1979, Green 1977, Kant 1981) and on the Programmer's Apprentice (Rich 1981) was fundamentally concerned with the codification of knowledge about programming techniques and the use of that knowledge in program synthesis and analysis Work within the knowledge-based paradigm is also continuing (e.g., Barstow 1982, Waters 1981). This article is concerned with the role played by knowledge of the task domain, a role which seems to be at least as important.


CS 394P: Automatic Programming

AITopics Original Links

The course consists of lectures for the first two-thirds of the semester. Homework problems and programming assignments illustrate the lecture material. The programs are not long; the intent is to gain some exposure to several kinds of programming systems. The latter part of the semester covers readings in the research literature; students are expected to present one or two papers to the class. Many of the world's best researchers in automatic programming are in Austin: Jim Browne, Don Batory, Elaine Kant, Ira Baxter, Ted Biggerstaff; they will be invited to present guest lectures to describe their work.


Automatic Programming

AITopics Original Links

Our approach to automatic programming is based on reuse of generic algorithms through views. A generic algorithm performs some task, such as sorting a linked list of records, based on abstract descriptions of the data on which the program operates. A view describes how actual application data corresponds to the abstract data as used in the generic algorithm. Given a view, a generic algorithm can be specialized by a compilation process to produce a version of the algorithm that performs the algorithm directly on the application data.


AI-Lab - Automatic Programming

AITopics Original Links

Our goal is automatic generation of computer programs from specifications that are much smaller and easier to write than ordinary programs. Generation of geometric programs specified by diagrams 2011 Yulin Li and Gordon S. Novak, Jr., In Proceedings of the 10th ACM international conference on Generative programming and component engineering, pp.


William A. Martin

AITopics Original Links

Professor Martin, whose main interest was in the practical application of artificial intelligence, was associated with the Laboratory for Computer Science and the Artificial Intelligence Laboratory at MIT. His work involved computer programs that embody various forms of expertise---mathematical, medical, management or linguistic---and the application of this expertise to practical ends. His system for symbolic mathematics is now used around the country by a large community of scientists. Professor Martin's interest in mangagement led him to the development of automatic programming techniques that are widely used.


Automatic Programming Assessments

#artificialintelligence

The industry today is on a constant look-out for good programmers. In this new age of digital services and products, it's a premium to possess programming skills. Whenever a friend asks me to refer a good programmer for his company, I tell him -- why would I refer to you, I will hire her for my team! But what does having programming skills really mean? What do we look for when we hire programmers?


Automatic Programming Robert Elschlager and Jorge Phillips Handbook of Artificial Intelligence

AI Classics

Theorem Proving Vision Robotics Information Processing Psychology Learning and Inductive Inference Planning and Related Problem-solving Techniques Automatic Programming (AP) Is a new, dynamic, and not precisely defined area of artificial intelligence. This overview discusses the definitions, history, motivating forces and goals of automatic programming and includes a brief description of the basic characteristics and central issues of AP systems. The article begins with a section discussing the various possible definitions of automatic programming, the background in which it has achieved existence, as well as some of its general motivating forces and goals. The next section describes four characteristics of all AP systems: the method by which a user of such a system specifies or describes the desired program, the target language in which the system writes the program, the problem or application area to which the system is addressed, and the approach or operational method employed by the system. Next, a section discusses four basic issues, one or more of which concern all AP systems: the representation and processing of partial or incomplete information; the transformation of structures, and especially the transformation of program descriptions into other descriptions (in this chapter, the term program description includes the user's specification of the desired program, any Internal representations of the progrrm, as well as the target language implementation); the efficiency of the target language Imp,ementation; and the system's capabilities for aiding in the understanding of the program.


Automatic Programming: A Tutorial on Formal Methodologies ALAN W. BIERMANN

AI Classics

Automatic computer programming or automatic programming occurs whenever a machine aids in this process. The amount of automatic programming that is occurring is a variable quantity that depends on how much aid the human is given. There are a number of dimensions on which the level of help can be measured including the level of the language used by the human, the amount of informality allowed, the degree to which the system is told what to do rather than how to do it, and the efficiency of the resulting code. Thus we usually say that there is a higher degree of automatic programming whenever a higher level language is used, less precision is required of the human, the input instructions are more declarative and less procedural, and the quality of the object code is better. The technologies of automatic programming thus include the fields that help move the programming experience along any of these dimensions: algorithm synthesis, programming language research, compiler theory, human factors, and others. This paper will concentrate on only the first of these topics, formal methodologies for the automatic construction of algorithms from fragmentary information. The formal methodologiest have been separated into two categories, synthesis from formal specifications and synthesis from examples. In the former case, it is assumed a specification is given for the target program with adequate domain information so that the target program can be derived in a series of logical steps.