Goto

Collaborating Authors

Automatic Programming


Eurisko: A Program Which Learns New Heuristics and Domain Concepts

Classics

The AM program, an early attempt to mechanize learning by discovery, has recently been expanded and extended to several other task domains. AM's ultimate failure apparently was due to its inability to discover new, powerful, domain-specific heuristics for the various new fields it uncovered. At that time, it seemed straight-forward to simply add ‘Heuristics’ as one more field in which to let AM explore, observe, define, and develop. That task—learning new heuristics by discovery—turned out to be much more difficult than was realized initially, and we have just now achieved some successes at it. Along the way, it became clearer why AM had succeeded in the first place, and why it was so difficult to use the same paradigm to discover new heuristics.


Principles of artificial intelligence

Classics

A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of the control strategies used. Palo Alto, California: Tioga.



Knowledge-Based Program Construction

Classics

Human programmers seem to know a lot about programming. This suggests a way to try to build automatic programming systems: encode this knowledge in some machine-usable form. In order to test the viability of this approach, knowledge about elementary symbolic programming has been codified into a set of about four hundred detailed rules, and a system, called PECOS, has been built for applying these rules to the task of implementing abstract algorithms. The implementation techniques covered by the rules include the representation of mappings as tables, sets of pairs, property list markings, and inverted mappings, as well as several techniques for enumerating the elements of a collection. The generality of the rules is suggested by the variety of domains in which PECOS has successfully implemented abstract algorithms, including simple symbolic programming, sorting, graph theory, and even simple number theory.


A global view of automatic programming

Classics

This paper presents a framework for characterizing automatic programming systems in terms of how a task is communicated to the system, the method and time at which the system acquires the knowledge to perform the task, and the characteristics of the resulting program to perform that task. It describes one approach In which both tasks and knowledge about the task domain are stated in natural language In the terms of that domain. All knowledge of computer science necessary to implement the task is internalized inside the system.In IJCAI-73: THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 20-23 August 1973, Stanford University Stanford, California, pp.494-499


Some Studies in Machine Learning Using the Game of Checkers, II - Recent Progress

Classics

A new signature table technique is described together with an improved book learning procedure which is thought to be much superior to the linear polynomial method described earlier. Full use is made of the so called “alpha-beta” pruning and several forms of forward pruning to restrict the spread of the move tree and to permit the program to look ahead to a much greater depth than it other- wise could do. While still unable to outplay checker masters, the program’s playing ability has been greatly improved.See also:IEEE XploreAnnual Review in Automatic Programming, Volume 6, Part 1, 1969, Pages 1–36Some Studies in Machine Learning Using the Game of CheckersIBM J of Research and Development ll, No.6, 1967,601


Automatic programming-properties and performance of FORTRAN systems I and II

Classics

Proceedings of the Symposium on the Mechanisation of Thought Processes.Teddington, Middlesex, England: National Physical Laboratory.


Automatic programming-properties and performance of FORTRAN systems I and II

Classics

From the The Teddington Conference– D. V. Blake and A. M. Uttley (Eds.). Proceedings of the Symposium on Mechanisation of Thought Processes, National Physical Laboratory, Teddington, Middlesex, England, London: H. M. Stationary Office.