Goto

Collaborating Authors

 Abductive Reasoning


G: Reasoning through Dynamic Knowledge Encoding Zeming Chen 1 Gail Weiss

Neural Information Processing Systems

Recent studies on transformer-based language models show that they can answer questions by reasoning over knowledge provided as part of the context (i.e., incontext reasoning). However, since the available knowledge is often not filtered for a particular question, in-context reasoning can be sensitive to distractor facts, additional content that is irrelevant to a question but that may be relevant for a different question (i.e., not necessarily random noise). In these situations, the model fails to distinguish the necessary knowledge to answer the question, leading to spurious reasoning and degraded performance. This reasoning failure contrasts with the model's apparent ability to distinguish its contextual knowledge from all the knowledge it has memorized during pre-training. Following this observation, we propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters before presenting it with a question.


Neural Algorithmic Reasoning Without Intermediate Supervision

Neural Information Processing Systems

Neural algorithmic reasoning is an emerging area of machine learning focusing on building models that can imitate the execution of classic algorithms, such as sorting, shortest paths, etc. One of the main challenges is to learn algorithms that are able to generalize to out-of-distribution data, in particular with significantly larger input sizes. Recent work on this problem has demonstrated the advantages of learning algorithms step-by-step, giving models access to all intermediate steps of the original algorithm. In this work, we instead focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision. We propose simple but effective architectural improvements and also build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory. We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRS Algorithmic Reasoning Benchmark and achieves new state-of-the-art results for several problems, including sorting, where we obtain significant improvements. Thus, learning without intermediate supervision is a promising direction for further research on neural reasoners.


NL-Eye: Abductive NLI for Images

arXiv.org Artificial Intelligence

Will a Visual Language Model (VLM)-based bot warn us about slipping if it detects a wet floor? Recent VLMs have demonstrated impressive capabilities, yet their ability to infer outcomes and causes remains underexplored. To address this, we introduce NL-Eye, a benchmark designed to assess VLMs' visual abductive reasoning skills. NL-Eye adapts the abductive Natural Language Inference (NLI) task to the visual domain, requiring models to evaluate the plausibility of hypothesis images based on a premise image and explain their decisions. NL-Eye consists of 350 carefully curated triplet examples (1,050 images) spanning diverse reasoning categories: physical, functional, logical, emotional, cultural, and social. The data curation process involved two steps - writing textual descriptions and generating images using text-to-image models, both requiring substantial human involvement to ensure high-quality and challenging scenes. Our experiments show that VLMs struggle significantly on NL-Eye, often performing at random baseline levels, while humans excel in both plausibility prediction and explanation quality. This demonstrates a deficiency in the abductive reasoning capabilities of modern VLMs. NL-Eye represents a crucial step toward developing VLMs capable of robust multimodal reasoning for real-world applications, including accident-prevention bots and generated video verification.


Bridging Machine Learning and Logical Reasoning by Abductive Learning

Neural Information Processing Systems

Perception and reasoning are two representative abilities of intelligence that are integrated seamlessly during human problem-solving processes. In the area of artificial intelligence (AI), the two abilities are usually realised by machine learning and logic programming, respectively. However, the two categories of techniques were developed separately throughout most of the history of AI. In this paper, we present the abductive learning targeted at unifying the two AI paradigms in a mutually beneficial way, where the machine learning model learns to perceive primitive logic facts from data, while logical reasoning can exploit symbolic domain knowledge and correct the wrongly perceived facts for improving the machine learning models. Furthermore, we propose a novel approach to optimise the machine learning model and the logical reasoning model jointly. We demonstrate that by using abductive learning, machines can learn to recognise numbers and resolve unknown mathematical operations simultaneously from images of simple hand-written equations. Moreover, the learned models can be generalised to longer equations and adapted to different tasks, which is beyond the capability of state-ofthe-art deep learning models.



Abductive explanations of classifiers under constraints: Complexity and properties

arXiv.org Artificial Intelligence

Abductive explanations (AXp's) are widely used for understanding decisions of classifiers. Existing definitions are suitable when features are independent. However, we show that ignoring constraints when they exist between features may lead to an explosion in the number of redundant or superfluous AXp's. We propose three new types of explanations that take into account constraints and that can be generated from the whole feature space or from a sample (such as a dataset). They are based on a key notion of coverage of an explanation, the set of instances it explains. We show that coverage is powerful enough to discard redundant and superfluous AXp's. For each type, we analyse the complexity of finding an explanation and investigate its formal properties. The final result is a catalogue of different forms of AXp's with different complexities and different formal guarantees.


Abductive and Contrastive Explanations for Scoring Rules in Voting

arXiv.org Artificial Intelligence

We view voting rules as classifiers that assign a winner (a class) to a profile of voters' preferences (an instance). We propose to apply techniques from formal explainability, most notably abductive and contrastive explanations, to identify minimal subsets of a preference profile that either imply the current winner or explain why a different candidate was not elected. Formal explanations turn out to have strong connections with classical problems studied in computational social choice such as bribery, possible and necessary winner identification, and preference learning. We design algorithms for computing abductive and contrastive explanations for scoring rules. For the Borda rule, we find a lower bound on the size of the smallest abductive explanations, and we conduct simulations to identify correlations between properties of preference profiles and the size of their smallest abductive explanations.


Abductive Reasoning in a Paraconsistent Framework

arXiv.org Artificial Intelligence

We explore the problem of explaining observations starting from a classically inconsistent theory by adopting a paraconsistent framework. We consider two expansions of the well-known Belnap--Dunn paraconsistent four-valued logic $\mathsf{BD}$: $\mathsf{BD}_\circ$ introduces formulas of the form $\circ\phi$ (the information on $\phi$ is reliable), while $\mathsf{BD}_\triangle$ augments the language with $\triangle\phi$'s (there is information that $\phi$ is true). We define and motivate the notions of abduction problems and explanations in $\mathsf{BD}_\circ$ and $\mathsf{BD}_\triangle$ and show that they are not reducible to one another. We analyse the complexity of standard abductive reasoning tasks (solution recognition, solution existence, and relevance / necessity of hypotheses) in both logics. Finally, we show how to reduce abduction in $\mathsf{BD}_\circ$ and $\mathsf{BD}_\triangle$ to abduction in classical propositional logic, thereby enabling the reuse of existing abductive reasoning procedures.


Automated Explanation Selection for Scientific Discovery

arXiv.org Artificial Intelligence

Automated reasoning is a key technology in the young but rapidly growing field of Explainable Artificial Intelligence (XAI). Explanability helps build trust in artificial intelligence systems beyond their mere predictive accuracy and robustness. In this paper, we propose a cycle of scientific discovery that combines machine learning with automated reasoning for the generation and the selection of explanations. We present a taxonomy of explanation selection problems that draws on insights from sociology and cognitive science. These selection criteria subsume existing notions and extend them with new properties.


Neural Algorithmic Reasoning Without Intermediate Supervision

Neural Information Processing Systems

Neural algorithmic reasoning is an emerging area of machine learning focusing on building models that can imitate the execution of classic algorithms, such as sorting, shortest paths, etc. One of the main challenges is to learn algorithms that are able to generalize to out-of-distribution data, in particular with significantly larger input sizes. Recent work on this problem has demonstrated the advantages of learning algorithms step-by-step, giving models access to all intermediate steps of the original algorithm. In this work, we instead focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision. We propose simple but effective architectural improvements and also build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory.