Collaborating Authors

Abductive Reasoning: Instructional Materials

Non-ground Abductive Logic Programming with Probabilistic Integrity Constraints Artificial Intelligence

Uncertain information is being taken into account in an increasing number of application fields. In the meantime, abduction has been proved a powerful tool for handling hypothetical reasoning and incomplete knowledge. Probabilistic logical models are a suitable framework to handle uncertain information, and in the last decade many probabilistic logical languages have been proposed, as well as inference and learning systems for them. In the realm of Abductive Logic Programming (ALP), a variety of proof procedures have been defined as well. In this paper, we consider a richer logic language, coping with probabilistic abduction with variables. In particular, we consider an ALP program enriched with integrity constraints `a la IFF, possibly annotated with a probability value. We first present the overall abductive language, and its semantics according to the Distribution Semantics. We then introduce a proof procedure, obtained by extending one previously presented, and prove its soundness and completeness.

Contrastive Reasoning in Neural Networks Artificial Intelligence

Neural networks represent data as projections on trained weights in a high dimensional manifold. The trained weights act as a knowledge base consisting of causal class dependencies. Inference built on features that identify these dependencies is termed as feed-forward inference. Such inference mechanisms are justified based on classical cause-to-effect inductive reasoning models. Inductive reasoning based feed-forward inference is widely used due to its mathematical simplicity and operational ease. Nevertheless, feed-forward models do not generalize well to untrained situations. To alleviate this generalization challenge, we propose using an effect-to-cause inference model that reasons abductively. Here, the features represent the change from existing weight dependencies given a certain effect. We term this change as contrast and the ensuing reasoning mechanism as contrastive reasoning. In this paper, we formalize the structure of contrastive reasoning and propose a methodology to extract a neural network's notion of contrast. We demonstrate the value of contrastive reasoning in two stages of a neural network's reasoning pipeline : in inferring and visually explaining decisions for the application of object recognition. We illustrate the value of contrastively recognizing images under distortions by reporting an improvement of 3.47%, 2.56%, and 5.48% in average accuracy under the proposed contrastive framework on CIFAR-10C, noisy STL-10, and VisDA datasets respectively.

Algorithms and Statistical Models for Scientific Discovery in the Petabyte Era Artificial Intelligence

The field of astronomy has arrived at a turning point in terms of size and complexity of both datasets and scientific collaboration. Commensurately, algorithms and statistical models have begun to adapt --- e.g., via the onset of artificial intelligence --- which itself presents new challenges and opportunities for growth. This white paper aims to offer guidance and ideas for how we can evolve our technical and collaborative frameworks to promote efficient algorithmic development and take advantage of opportunities for scientific discovery in the petabyte era. We discuss challenges for discovery in large and complex data sets; challenges and requirements for the next stage of development of statistical methodologies and algorithmic tool sets; how we might change our paradigms of collaboration and education; and the ethical implications of scientists' contributions to widely applicable algorithms and computational modeling. We start with six distinct recommendations that are supported by the commentary following them. This white paper is related to a larger corpus of effort that has taken place within and around the Petabytes to Science Workshops (

Reasoning-Driven Question-Answering for Natural Language Understanding Artificial Intelligence

Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field.

Learning Abduction Using Partial Observability

AAAI Conferences

Juba recently proposed a formulation of learning abductive reasoning from examples, in which both the relative plausibility of various explanations, as well as which explanations are valid, are learned directly from data. The main shortcoming of this formulation of the task is that it assumes access to full-information (i.e., fully specified) examples; relatedly, it offers no role for declarative background knowledge, as such knowledge is rendered redundant in the abduction task by complete information. In this work we extend the formulation to utilize such partially specified examples, along with declarative background knowledge about the missing data. We show that it is possible to use implicitly learned rules together with the explicitly given declarative knowledge to support hypotheses in the course of abduction. We also show how to use knowledge in the form of graphical causal models to refine the proposed hypotheses. Finally, we observe that when a small explanation exists, it is possible to obtain a much-improved guarantee in the challenging exception-tolerant setting. Such small, human-understandable explanations are of particular interest for potential applications of the task.

Learning Relational Event Models from Video

Journal of Artificial Intelligence Research

Event models obtained automatically from video can be used in applications ranging from abnormal event detection to content based video retrieval. When multiple agents are involved in the events, characterizing events naturally suggests encoding interactions as relations. Learning event models from this kind of relational spatio-temporal data using relational learning techniques such as Inductive Logic Programming (ILP) hold promise, but have not been successfully applied to very large datasets which result from video data. In this paper, we present a novel framework REMIND (Relational Event Model INDuction) for supervised relational learning of event models from large video datasets using ILP. Efficiency is achieved through the learning from interpretations setting and using a typing system that exploits the type hierarchy of objects in a domain. The use of types also helps prevent over generalization. Furthermore, we also present a type-refining operator and prove that it is optimal. The learned models can be used for recognizing events from previously unseen videos. We also present an extension to the framework by integrating an abduction step that improves the learning performance when there is noise in the input data. The experimental results on several hours of video data from two challenging real world domains (an airport domain and a physical action verbs domain) suggest that the techniques are suitable to real world scenarios.