Supervised Learning
A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction
In this paper we propose an approximated learning framework for large scale graphical models and derive message passing algorithms for learning their parameters efficiently. We first relate CRFs and structured SVMs and show that in the CRF's primal a variant of the log-partition function, known as soft-max, smoothly approximates the hinge loss function of structured SVMs. We then propose an intuitive approximation for structured prediction problems using Fenchel duality based on a local entropy approximation that computes the exact gradients of the approximated problem and is guaranteed to converge. Unlike existing approaches, this allow us to learn graphical models with cycles and very large number of parameters efficiently. We demonstrate the effectiveness of our approach in an image denoising task. This task was previously solved by sharing parameters across cliques. In contrast, our algorithm is able to efficiently learn large number of parameters resulting in orders of magnitude better prediction.
Direct Loss Minimization for Structured Prediction
Hazan, Tamir, Keshet, Joseph, McAllester, David A.
In discriminative machine learning one is interested in training a system to optimize a certain desired measure of performance, or loss. In binary classification one typically tries to minimizes the error rate. But in structured prediction each task often has its own measure of performance such as the BLEU score in machine translation or the intersection-over-union score in PASCAL segmentation. The most common approaches to structured prediction, structural SVMs and CRFs, do not minimize the task loss: the former minimizes a surrogate loss with no guarantees for task loss and the latter minimizes log loss independent of task loss. The main contribution of this paper is a theorem stating that a certain perceptron-like learning rule, involving features vectors derived from loss-adjusted inference, directly corresponds to the gradient of task loss. We give empirical results on phonetic alignment of a standard test set from the TIMIT corpus, which surpasses all previously reported results on this problem.
(RF)^2 -- Random Forest Random Field
Payet, Nadia, Todorovic, Sinisa
We combine random forest (RF) and conditional random field (CRF) into a new computational framework, called random forest random field (RF)^2. Inference of (RF)^2 uses the Swendsen-Wang cut algorithm, characterized by Metropolis-Hastings jumps. A jump from one state to another depends on the ratio of the proposal distributions, and on the ratio of the posterior distributions of the two states. Prior work typically resorts to a parametric estimation of these four distributions, and then computes their ratio. Our key idea is to instead directly estimate these ratios using RF. RF collects in leaf nodes of each decision tree the class histograms of training examples. We use these class histograms for a non-parametric estimation of the distribution ratios. We derive the theoretical error bounds of a two-class (RF)^2. (RF)^2 is applied to a challenging task of multiclass object recognition and segmentation over a random field of input image regions. In our empirical evaluation, we use only the visual information provided by image regions (e.g., color, texture, spatial layout), whereas the competing methods additionally use higher-level cues about the horizon location and 3D layout of surfaces in the scene. Nevertheless, (RF)^2 outperforms the state of the art on benchmark datasets, in terms of accuracy and computation time.
Convex Multiple-Instance Learning by Estimating Likelihood Ratio
Li, Fuxin, Sminchisescu, Cristian
Multiple-Instance learning has been long known as a hard non-convex problem. In this work, we propose an approach that recasts it as a convex likelihood ratio estimation problem. Firstly, the constraint in multiple-instance learning is reformulated into a convex constraint on the likelihood ratio. Then we show that a joint estimation of a likelihood ratio function and the likelihood on training instances can be learned convexly. Theoretically, we prove a quantitative relationship between the risk estimated under the 0-1 classification loss, and under a loss function for likelihood ratio estimation. It is shown that our likelihood ratio estimation is generally a good surrogate for the 0-1 loss, and separates positive and negative instances well. However with the joint estimation it tends to underestimate the likelihood of an example to be positive. We propose to use these likelihood ratio estimates as features, and learn a linear combination on them to classify the bags. Experiments on synthetic and real datasets show the superiority of the approach.
Exploiting weakly-labeled Web images to improve object classification: a domain adaptation approach
Bergamo, Alessandro, Torresani, Lorenzo
Most current image categorization methods require large collections of manually annotated training examples to learn accurate visual recognition models. The time-consuming human labeling effort effectively limits these approaches to recognition problems involving a small number of different object classes. In order to address this shortcoming, in recent years several authors have proposed to learn object classifiers from weakly-labeled Internet images, such as photos retrieved by keyword-based image search engines. While this strategy eliminates the need for human supervision, the recognition accuracies of these methods are considerably lower than those obtained with fully-supervised approaches, because of the noisy nature of the labels associated to Web data. In this paper we investigate and compare methods that learn image classifiers by combining very few manually annotated examples (e.g., 1-10 images per class) and a large number of weakly-labeled Web photos retrieved using keyword-based image search. We cast this as a domain adaptation problem: given a few strongly-labeled examples in a target domain (the manually annotated examples) and many source domain examples (the weakly-labeled Web photos), learn classifiers yielding small generalization error on the target domain. Our experiments demonstrate that, for the same number of strongly-labeled examples, our domain adaptation approach produces significant recognition rate improvements over the best published results (e.g., 65% better when using 5 labeled training examples per class) and that our classifiers are one order of magnitude faster to learn and to evaluate than the best competing method, despite our use of large weakly-labeled data sets.
An Introduction to Conditional Random Fields
Sutton, Charles, McCallum, Andrew
Often we wish to predict a large number of variables that depend on each other as well as on other observed variables. Structured prediction methods are essentially a combination of classification and graphical modeling, combining the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features. This tutorial describes conditional random fields, a popular probabilistic method for structured prediction. CRFs have seen wide application in natural language processing, computer vision, and bioinformatics. We describe methods for inference and parameter estimation for CRFs, including practical issues for implementing large scale CRFs. We do not assume previous knowledge of graphical modeling, so this tutorial is intended to be useful to practitioners in a wide variety of fields.
Towards a Computational Model of Why Some Students Learn Faster than Others
Li, Nan (Carnegie Mellon University) | Matsuda, Noboru (Carnegie Mellon University) | Cohen, William (Carnegie Mellon University) | Koedinger, Kenneth
Learners that have better metacognition acquire knowledge faster than others who do not. If we had better models of such learning, we would be able to build a better metacognitive educational system. In this paper, we propose a computational model that uses a probabilistic context free grammar induction algorithm yielding metacognitive learning by acquiring deep features to assist future learning. We discuss the challenges of integrating this model into a synthetic student, and possible future studies in using this model to better understand human learning. Preliminary results suggest that both stronger prior knowledge and a better learning strategy can speed up the learning process. Some model variations generate human-like error pattern.
Online Multiple Kernel Learning for Structured Prediction
Martins, Andre F. T., Figueiredo, Mario A. T., Aguiar, Pedro M. Q., Smith, Noah A., Xing, Eric P.
Despite the recent progress towards efficient multiple kernel learning (MKL), the structured output case remains an open research front. Current approaches involve repeatedly solving a batch learning problem, which makes them inadequate for large scale scenarios. We propose a new family of online proximal algorithms for MKL (as well as for group-lasso and variants thereof), which overcomes that drawback. We show regret, convergence, and generalization bounds for the proposed method. Experiments on handwriting recognition and dependency parsing testify for the successfulness of the approach.
A bagging SVM to learn from positive and unlabeled examples
Mordelet, Fantine, Vert, Jean-Philippe
We consider the problem of learning a binary classifier from a training set of positive and unlabeled examples, both in the inductive and in the transductive setting. This problem, often referred to as \emph{PU learning}, differs from the standard supervised classification problem by the lack of negative examples in the training set. It corresponds to an ubiquitous situation in many applications such as information retrieval or gene ranking, when we have identified a set of data of interest sharing a particular property, and we wish to automatically retrieve additional data sharing the same property among a large and easily available pool of unlabeled data. We propose a conceptually simple method, akin to bagging, to approach both inductive and transductive PU learning problems, by converting them into series of supervised binary classification problems discriminating the known positive examples from random subsamples of the unlabeled set. We empirically demonstrate the relevance of the method on simulated and real data, where it performs at least as well as existing methods while being faster.
Multi-Label Learning with Weak Label
Sun, Yu-Yin (Nanjing University) | Zhang, Yin (Nanjing University) | Zhou, Zhi-Hua (Nanjing University)
Multi-label learning deals with data associated with multiple labels simultaneously. Previous work on multi-label learning assumes that for each instance, the “full” label set associated with each training instance is given by users. In many applications, however, to get the full label set for each instance is difficult and only a “partial” set of labels is available. In such cases, the appearance of a label means that the instance is associated with this label, while the absence of a label does not imply that this label is not proper for the instance. We call this kind of problem “weak label” problem. In this paper, we propose the WELL (WEak Label Learning) method to solve the weak label problem. We consider that the classification boundary for each label should go across low density regions, and that each label generally has much smaller number of positive examples than negative examples. The objective is formulated as a convex optimization problem which can be solved efficiently. Moreover, we exploit the correlation between labels by assuming that there is a group of low-rank base similarities, and the appropriate similarities between instances for different labels can be derived from these base similarities. Experiments validate the performance of WELL.