Supervised Learning


Multi-armed bandits on implicit metric spaces

Neural Information Processing Systems

The multi-armed bandit (MAB) setting is a useful abstraction of many online learning tasks which focuses on the trade-off between exploration and exploitation. In this setting, an online algorithm has a fixed set of alternatives ("arms"), and in each round it selects one arm and then observes the corresponding reward. While the case of small number of arms is by now well-understood, a lot of recent work has focused on multi-armed bandits with (infinitely) many arms, where one needs to assume extra structure in order to make the problem tractable. In particular, in the Lipschitz MAB problem there is an underlying similarity metric space, known to the algorithm, such that any two arms that are close in this metric space have similar payoffs. In this paper we consider the more realistic scenario in which the metric space is *implicit* -- it is defined by the available structure but not revealed to the algorithm directly.


Structure Regularization for Structured Prediction

Neural Information Processing Systems

While there are many studies on weight regularization, the study on structure regularization is rare. Many existing systems on structured prediction focus on increasing the level of structural dependencies within the model. However, this trend could have been misdirected, because our study suggests that complex structures are actually harmful to generalization ability in structured prediction. To control structure-based overfitting, we propose a structure regularization framework via \emph{structure decomposition}, which decomposes training samples into mini-samples with simpler structures, deriving a model with better generalization power. We show both theoretically and empirically that structure regularization can effectively control overfitting risk and lead to better accuracy.


Direct Loss Minimization for Structured Prediction

Neural Information Processing Systems

In discriminative machine learning one is interested in training a system to optimize a certain desired measure of performance, or loss. In binary classification one typically tries to minimizes the error rate. But in structured prediction each task often has its own measure of performance such as the BLEU score in machine translation or the intersection-over-union score in PASCAL segmentation. The most common approaches to structured prediction, structural SVMs and CRFs, do not minimize the task loss: the former minimizes a surrogate loss with no guarantees for task loss and the latter minimizes log loss independent of task loss. The main contribution of this paper is a theorem stating that a certain perceptron-like learning rule, involving features vectors derived from loss-adjusted inference, directly corresponds to the gradient of task loss.


Fast, smooth and adaptive regression in metric spaces

Neural Information Processing Systems

It was recently shown that certain nonparametric regressors can escape the curse of dimensionality in the sense that their convergence rates adapt to the intrinsic dimension of data (\cite{BL:65, SK:77}). We prove some stronger results in more general settings. In particular, we consider a regressor which, by combining aspects of both tree-based regression and kernel regression, operates on a general metric space, yields a smooth function, and evaluates in time $O(\log n)$. We derive a tight convergence rate of the form $n {-2/(2 d)}$ where $d$ is the Assouad dimension of the input space. Papers published at the Neural Information Processing Systems Conference.


Robust Nonparametric Regression with Metric-Space Valued Output

Neural Information Processing Systems

Motivated by recent developments in manifold-valued regression we propose a family of nonparametric kernel-smoothing estimators with metric-space valued output including a robust median type estimator and the classical Frechet mean. Depending on the choice of the output space and the chosen metric the estimator reduces to partially well-known procedures for multi-class classification, multivariate regression in Euclidean space, regression with manifold-valued output and even some cases of structured output learning. In this paper we focus on the case of regression with manifold-valued input and output. We show pointwise and Bayes consistency for all estimators in the family for the case of manifold-valued output and illustrate the robustness properties of the estimator with experiments. Papers published at the Neural Information Processing Systems Conference.


A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction

Neural Information Processing Systems

In this paper we propose an approximated learning framework for large scale graphical models and derive message passing algorithms for learning their parameters efficiently. We first relate CRFs and structured SVMs and show that in the CRF's primal a variant of the log-partition function, known as soft-max, smoothly approximates the hinge loss function of structured SVMs. We then propose an intuitive approximation for structured prediction problems using Fenchel duality based on a local entropy approximation that computes the exact gradients of the approximated problem and is guaranteed to converge. Unlike existing approaches, this allow us to learn graphical models with cycles and very large number of parameters efficiently. We demonstrate the effectiveness of our approach in an image denoising task.


Maximum Margin Multi-Label Structured Prediction

Neural Information Processing Systems

We study multi-label prediction for structured output spaces, a problem that occurs, for example, in object detection in images, secondary structure prediction in computational biology, and graph matching with symmetries. Conventional multi-label classification techniques are typically not applicable in this situation, because they require explicit enumeration of the label space, which is infeasible in case of structured outputs. Relying on techniques originally designed for single- label structured prediction, in particular structured support vector machines, results in reduced prediction accuracy, or leads to infeasible optimization problems. In this work we derive a maximum-margin training formulation for multi-label structured prediction that remains computationally tractable while achieving high prediction accuracy. It also shares most beneficial properties with single-label maximum-margin approaches, in particular a formulation as a convex optimization problem, efficient working set training, and PAC-Bayesian generalization bounds.


Cocktail Party Processing via Structured Prediction

Neural Information Processing Systems

While human listeners excel at selectively attending to a conversation in a cocktail party, machine performance is still far inferior by comparison. We show that the cocktail party problem, or the speech separation problem, can be effectively approached via structured prediction. To account for temporal dynamics in speech, we employ conditional random fields (CRFs) to classify speech dominance within each time-frequency unit for a sound mixture. To capture complex, nonlinear relationship between input and output, both state and transition feature functions in CRFs are learned by deep neural networks. The formulation of the problem as classification allows us to directly optimize a measure that is well correlated with human speech intelligibility.


A Structured Prediction Approach for Label Ranking

Neural Information Processing Systems

We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed.


Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction

Neural Information Processing Systems

Machine understanding of complex images is a key goal of artificial intelligence. One challenge underlying this task is that visual scenes contain multiple inter-related objects, and that global context plays an important role in interpreting the scene. A natural modeling framework for capturing such effects is structured prediction, which optimizes over complex labels, while modeling within-label interactions. However, it is unclear what principles should guide the design of a structured prediction model that utilizes the power of deep learning components. Here we propose a design principle for such architectures that follows from a natural requirement of permutation invariance.