Inductive Learning
Parameterizing Context: Unleashing the Power of Parameter-Efficient Fine-Tuning and In-Context Tuning for Continual Table Semantic Parsing Yongrui Chen 1,2, Guilin Qi
Continual table semantic parsing aims to train a parser on a sequence of tasks, where each task requires the parser to translate natural language into SQL based on taskspecific tables but only offers limited training examples. Conventional methods tend to suffer from overfitting with limited supervision, as well as catastrophic forgetting due to parameter updates. Despite recent advancements that partially alleviate these issues through semi-supervised data augmentation and retention of a few past examples, the performance is still limited by the volume of unsupervised data and stored examples. To overcome these challenges, this paper introduces a novel method integrating parameter-efficient fine-tuning (PEFT) and in-context tuning (ICT) for training a continual table semantic parser. Initially, we present a task-adaptive PEFT framework capable of fully circumventing catastrophic forgetting, which is achieved by freezing the pre-trained model backbone and fine-tuning small-scale prompts. Building on this, we propose a teacher-student framework-based solution. The teacher addresses the few-shot problem using ICT, which procures contextual information by demonstrating a few training examples. In turn, the student leverages the proposed PEFT framework to learn from the teacher's output distribution, then compresses and saves the contextual information to the prompts subsequently, eliminating the need to store any training examples.
On the Error Resistance of Hinge Loss Minimization
Commonly used classification algorithms in machine learning, such as support vector machines, minimize a convex surrogate loss on training examples. In practice, these algorithms are surprisingly robust to errors in the training data. In this work, we identify a set of conditions on the data under which such surrogate loss minimization algorithms provably learn the correct classifier. This allows us to establish, in a unified framework, the robustness of these algorithms under various models on data as well as error. In particular, we show that if the data is linearly classifiable with a slightly non-trivial margin (i.e. a margin at least C / d for d-dimensional unit vectors), and the class-conditional distributions are near isotropic and logconcave, then surrogate loss minimization has negligible error on the uncorrupted data even when a constant fraction of examples are adversarially mislabeled.
Refining Language Models with Compositional Explanations 2
Pre-trained language models have been successful on text classification tasks, but are prone to learning spurious correlations from biased datasets, and are thus vulnerable when making inferences in a new domain. Prior work reveals such spurious patterns via post-hoc explanation algorithms which compute the importance of input features. Further, the model is regularized to align the importance scores with human knowledge, so that the unintended model behaviors are eliminated. However, such a regularization technique lacks flexibility and coverage, since only importance scores towards a pre-defined list of features are adjusted, while more complex human knowledge such as feature interaction and pattern generalization can hardly be incorporated. In this work, we propose to refine a learned language model for a target domain by collecting human-provided compositional explanations regarding observed biases. By parsing these explanations into executable logic rules, the human-specified refinement advice from a small set of explanations can be generalized to more training examples. We additionally introduce a regularization term allowing adjustments for both importance and interaction of features to better rectify model behavior.
Unsupervised Sound Separation Using Mixture Invariant Training
In recent years, rapid progress has been made on the problem of single-channel sound separation using supervised training of deep neural networks. In such supervised approaches, a model is trained to predict the component sources from synthetic mixtures created by adding up isolated ground-truth sources. Reliance on this synthetic training data is problematic because good performance depends upon the degree of match between the training data and real-world audio, especially in terms of the acoustic conditions and distribution of sources. The acoustic properties can be challenging to accurately simulate, and the distribution of sound types may be hard to replicate. In this paper, we propose a completely unsupervised method, mixture invariant training (MixIT), that requires only single-channel acoustic mixtures. In MixIT, training examples are constructed by mixing together existing mixtures, and the model separates them into a variable number of latent sources, such that the separated sources can be remixed to approximate the original mixtures. We show that MixIT can achieve competitive performance compared to supervised methods on speech separation. Using MixIT in a semi-supervised learning setting enables unsupervised domain adaptation and learning from large amounts of realworld data without ground-truth source waveforms. In particular, we significantly improve reverberant speech separation performance by incorporating reverberant mixtures, train a speech enhancement system from noisy mixtures, and improve universal sound separation by incorporating a large amount of in-the-wild data.
Open-set Label Noise Can Improve Robustness Against Inherent Label Noise Hongxin Wei 1 Lue Tao 2,3 Bo An
Learning with noisy labels is a practically challenging problem in weakly supervised learning. In the existing literature, open-set noises are always considered to be poisonous for generalization, similar to closed-set noises. In this paper, we empirically show that open-set noisy labels can be non-toxic and even benefit the robustness against inherent noisy labels. Inspired by the observations, we propose a simple yet effective regularization by introducing Open-set samples with Dynamic Noisy Labels (ODNL) into training. With ODNL, the extra capacity of the neural network can be largely consumed in a way that does not interfere with learning patterns from clean data. Through the lens of SGD noise, we show that the noises induced by our method are random-direction, conflict-free and biased, which may help the model converge to a flat minimum with superior stability and enforce the model to produce conservative predictions on Out-of-Distribution instances. Extensive experimental results on benchmark datasets with various types of noisy labels demonstrate that the proposed method not only enhances the performance of many existing robust algorithms but also achieves significant improvement on Out-of-Distribution detection tasks even in the label noise setting.