Goto

Collaborating Authors

 Country


t-logistic regression

Neural Information Processing Systems

We extend logistic regression by using t-exponential families which were introduced recently in statistical physics. This gives rise to a regularized risk minimization problem with a non-convex loss function. An efficient block coordinate descent optimization scheme can be derived for estimating the parameters. Because of the nature of the loss function, our algorithm is tolerant to label noise. Furthermore, unlike other algorithms which employ non-convex loss functions, our algorithm is fairly robust to the choice of initial values. We verify both these observations empirically on a number of synthetic and real datasets.


Gated Softmax Classification

Neural Information Processing Systems

We describe a log-bilinear" model that computes class probabilities by combining an input vector multiplicatively with a vector of binary latent variables. Even though the latent variables can take on exponentially many possible combinations of values, we can efficiently compute the exact probability of each class by marginalizing over the latent variables. This makes it possible to get the exact gradient of the log likelihood. The bilinear score-functions are defined using a three-dimensional weight tensor, and we show that factorizing this tensor allows the model to encode invariances inherent in a task by learning a dictionary of invariant basis functions. Experiments on a set of benchmark problems show that this fully probabilistic model can achieve classification performance that is competitive with (kernel) SVMs, backpropagation, and deep belief nets."


A Computational Decision Theory for Interactive Assistants

Neural Information Processing Systems

We study several classes of interactive assistants from the points of view of decision theory and computational complexity. We first introduce a class of POMDPs called hidden-goal MDPs (HGMDPs), which formalize the problem of interactively assisting an agent whose goal is hidden and whose actions are observable. In spite of its restricted nature, we show that optimal action selection in finite horizon HGMDPs is PSPACE-complete even in domains with deterministic dynamics. We then introduce a more restricted model called helper action MDPs (HAMDPs), where the assistant's action is accepted by the agent when it is helpful, and can be easily ignored by the agent otherwise. We show classes of HAMDPs that are complete for PSPACE and NP along with a polynomial time class. Furthermore, we show that for general HAMDPs a simple myopic policy achieves a regret, compared to an omniscient assistant, that is bounded by the entropy of the initial goal distribution. A variation of this policy is shown to achieve worst-case regret that is logarithmic in the number of goals for any goal distribution.


Online Classification with Specificity Constraints

Neural Information Processing Systems

We consider the online binary classification problem, where we are given m classifiers. At each stage, the classifiers map the input to the probability that the input belongs to the positive class. An online classification meta-algorithm is an algorithm that combines the outputs of the classifiers in order to attain a certain goal, without having prior knowledge on the form and statistics of the input, and without prior knowledge on the performance of the given classifiers. In this paper, we use sensitivity and specificity as the performance metrics of the meta-algorithm. In particular, our goal is to design an algorithm which satisfies the following two properties (asymptotically): (i) its average false positive rate (fp-rate) is under some given threshold, and (ii) its average true positive rate (tp-rate) is not worse than the tp-rate of the best convex combination of the m given classifiers that satisfies fp-rate constraint, in hindsight. We show that this problem is in fact a special case of the regret minimization problem with constraints, and therefore the above goal is not attainable. Hence, we pose a relaxed goal and propose a corresponding practical online learning meta-algorithm that attains it. In the case of two classifiers, we show that this algorithm takes a very simple form. To our best knowledge, this is the first algorithm that addresses the problem of the average tp-rate maximization under average fp-rate constraints in the online setting.


Sparse Instrumental Variables (SPIV) for Genome-Wide Studies

Neural Information Processing Systems

This paper describes a probabilistic framework for studying associations between multiple genotypes, biomarkers, and phenotypic traits in the presence of noise and unobserved confounders for large genetic studies. The framework builds on sparse linear methods developed for regression and modified here for inferring causal structures of richer networks with latent variables. The method is motivated by the use of genotypes as ``instruments'' to infer causal associations between phenotypic biomarkers and outcomes, without making the common restrictive assumptions of instrumental variable methods. The method may be used for an effective screening of potentially interesting genotype phenotype and biomarker-phenotype associations in genome-wide studies, which may have important implications for validating biomarkers as possible proxy endpoints for early stage clinical trials. Where the biomarkers are gene transcripts, the method can be used for fine mapping of quantitative trait loci (QTLs) detected in genetic linkage studies. The method is applied for examining effects of gene transcript levels in the liver on plasma HDL cholesterol levels for a sample of sequenced mice from a heterogeneous stock, with $\sim 10^5$ genetic instruments and $\sim 47 \times 10^3$ gene transcripts.


Synergies in learning words and their referents

Neural Information Processing Systems

This paper presents Bayesian non-parametric models that simultaneously learn to segment words from phoneme strings and learn the referents of some of those words, and shows that there is a synergistic interaction in the acquisition of these two kinds of linguistic information. The models themselves are novel kinds of Adaptor Grammars that are an extension of an embedding of topic models into PCFGs. These models simultaneously segment phoneme sequences into words and learn the relationship between non-linguistic objects to the words that refer to them. We show (i) that modelling inter-word dependencies not only improves the accuracy of the word segmentation but also of word-object relationships, and (ii) that a model that simultaneously learns word-object relationships and word segmentation segments more accurately than one that just learns word segmentation on its own. We argue that these results support an interactive view of language acquisition that can take advantage of synergies such as these.


Moreau-Yosida Regularization for Grouped Tree Structure Learning

Neural Information Processing Systems

We consider the tree structured group Lasso where the structure over the features can be represented as a tree with leaf nodes as features and internal nodes as clusters of the features. The structured regularization with a pre-defined tree structure is based on a group-Lasso penalty, where one group is defined for each node in the tree. Such a regularization can help uncover the structured sparsity, which is desirable for applications with some meaningful tree structures on the features. However, the tree structured group Lasso is challenging to solve due to the complex regularization. In this paper, we develop an efficient algorithm for the tree structured group Lasso. One of the key steps in the proposed algorithm is to solve the Moreau-Yosida regularization associated with the grouped tree structure. The main technical contributions of this paper include (1) we show that the associated Moreau-Yosida regularization admits an analytical solution, and (2) we develop an efficient algorithm for determining the effective interval for the regularization parameter. Our experimental results on the AR and JAFFE face data sets demonstrate the efficiency and effectiveness of the proposed algorithm.


Agnostic Active Learning Without Constraints

Neural Information Processing Systems

We present and analyze an agnostic active learning algorithm that works without keeping a version space. This is unlike all previous approaches where a restricted set of candidate hypotheses is maintained throughout learning, and only hypotheses from this set are ever returned. By avoiding this version space approach, our algorithm sheds the computational burden and brittleness associated with maintaining version spaces, yet still allows for substantial improvements over supervised learning for classification.


Effects of Synaptic Weight Diffusion on Learning in Decision Making Networks

Neural Information Processing Systems

When animals repeatedly choose actions from multiple alternatives, they can allocate their choices stochastically depending on past actions and outcomes. It is commonly assumed that this ability is achieved by modifications in synaptic weights related to decision making. Choice behavior has been empirically found to follow Herrnstein’s matching law. Loewenstein & Seung (2006) demonstrated that matching behavior is a steady state of learning in neural networks if the synaptic weights change proportionally to the covariance between reward and neural activities. However, their proof did not take into account the change in entire synaptic distributions. In this study, we show that matching behavior is not necessarily a steady state of the covariance-based learning rule when the synaptic strength is sufficiently strong so that the fluctuations in input from individual sensory neurons influence the net input to output neurons. This is caused by the increasing variance in the input potential due to the diffusion of synaptic weights. This effect causes an undermatching phenomenon, which has been observed in many behavioral experiments. We suggest that the synaptic diffusion effects provide a robust neural mechanism for stochastic choice behavior.


Inference with Multivariate Heavy-Tails in Linear Models

Neural Information Processing Systems

Heavy-tailed distributions naturally occur in many real life problems. Unfortunately, it is typically not possible to compute inference in closed-form in graphical models which involve such heavy tailed distributions. In this work, we propose a novel simple linear graphical model for independent latent random variables, called linear characteristic model (LCM), defined in the characteristic function domain. Using stable distributions, a heavy-tailed family of distributions which is a generalization of Cauchy, L\'evy and Gaussian distributions, we show for the first time, how to compute both exact and approximate inference in such a linear multivariate graphical model. LCMs are not limited to only stable distributions, in fact LCMs are always defined for any random variables (discrete, continuous or a mixture of both). We provide a realistic problem from the field of computer networks to demonstrate the applicability of our construction. Other potential application is iterative decoding of linear channels with non-Gaussian noise.