t-logistic regression
Ding, Nan, Vishwanathan, S.v.n.
–Neural Information Processing Systems
We extend logistic regression by using t-exponential families which were introduced recently in statistical physics. This gives rise to a regularized risk minimization problem with a non-convex loss function. An efficient block coordinate descent optimization scheme can be derived for estimating the parameters. Because of the nature of the loss function, our algorithm is tolerant to label noise. Furthermore, unlike other algorithms which employ non-convex loss functions, our algorithm is fairly robust to the choice of initial values. We verify both these observations empirically on a number of synthetic and real datasets.
Neural Information Processing Systems
Dec-31-2010
- Country:
- Europe > United Kingdom
- England > Cambridgeshire > Cambridge (0.14)
- North America > United States (0.29)
- Europe > United Kingdom
- Genre:
- Research Report
- Experimental Study (0.77)
- New Finding (0.67)
- Research Report
- Technology: