Not enough data to create a plot.
Try a different view from the menu above.
Gorilla: Large Language Model Connected with Massive APIs Xin Wang 2 Joseph E. Gonzalez
Large Language Models (LLMs) have seen an impressive wave of advances, with models now excelling in a variety of tasks, such as mathematical reasoning and program synthesis. However, their potential to effectively use tools via API calls remains unfulfilled. This is a challenging task even for today's state-of-the-art LLMs such as GPT-4 largely due to their unawareness of what APIs are available and how to use them in a frequently updated tool set. We develop Gorilla, a finetuned LLaMA model that surpasses the performance of GPT-4 on writing API calls. Trained with the novel Retriever Aware Training (RAT), when combined with a document retriever, Gorilla demonstrates a strong capability to adapt to test-time document changes, allowing flexible user updates or version changes. It also substantially mitigates the issue of hallucination, commonly encountered when prompting LLMs directly. To evaluate the model's ability, we introduce APIBench, a comprehensive dataset consisting of HuggingFace, TorchHub, and TensorHub APIs. The successful integration of the retrieval system with Gorilla demonstrates the potential for LLMs to use tools more accurately, keep up with frequently updated documentation, and consequently increase the reliability and applicability of their outputs. Gorilla's code, model, data, and demo are available at: https://gorilla.cs.berkeley.edu
Self-playing Adversarial Language Game Enhances LLM Reasoning
We explore the potential of self-play training for large language models (LLMs) in a two-player adversarial language game called Adversarial Taboo. In this game, an attacker and a defender communicate around a target word only visible to the attacker. The attacker aims to induce the defender to speak the target word unconsciously, while the defender tries to infer the target word from the attacker's utterances. To win the game, both players must have sufficient knowledge about the target word and high-level reasoning ability to infer and express in this informationreserved conversation. Hence, we are curious about whether LLMs' reasoning ability can be further enhanced by Self-Playing this Adversarial language Game (SPAG). With this goal, we select several open-source LLMs and let each act as the attacker and play with a copy of itself as the defender on an extensive range of target words. Through reinforcement learning on the game outcomes, we observe that the LLMs' performances uniformly improve on a broad range of reasoning benchmarks. Furthermore, iteratively adopting this self-play process can continuously promote LLMs' reasoning abilities. The code is available at https://github.com/Linear95/SPAG.
Acknowledgements
We thank Pavel Izmailov, Polina Kirichenko, and Wesley Maddox for helpful discussions. This research is supported by NSF CAREER IIS-2145492, NSF I-DISRE 193471, NIH R01DA048764-01A1, NSF IIS-1910266, NSF 1922658 NRT-HDR: FUTURE Foundations, Translation, and Responsibility for Data Science, Meta Core Data Science, Google AI Research, BigHat Biosciences, Capital One, and an Amazon Research Award. An image is worth 16x16 words: Transformers for image recognition at scale. The pascal visual object classes (voc) challenge. Bayesian neural network priors revisited.