Plotting

Neural Algorithmic Reasoning Without Intermediate Supervision

Neural Information Processing Systems

Neural algorithmic reasoning is an emerging area of machine learning focusing on building models that can imitate the execution of classic algorithms, such as sorting, shortest paths, etc. One of the main challenges is to learn algorithms that are able to generalize to out-of-distribution data, in particular with significantly larger input sizes. Recent work on this problem has demonstrated the advantages of learning algorithms step-by-step, giving models access to all intermediate steps of the original algorithm. In this work, we instead focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision. We propose simple but effective architectural improvements and also build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory. We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRS Algorithmic Reasoning Benchmark and achieves new state-of-the-art results for several problems, including sorting, where we obtain significant improvements. Thus, learning without intermediate supervision is a promising direction for further research on neural reasoners.


A New Neural Kernel Regime: The Inductive Bias of Multi-Task Learning

Neural Information Processing Systems

This paper studies the properties of solutions to multi-task shallow ReLU neural network learning problems, wherein the network is trained to fit a dataset with minimal sum of squared weights. Remarkably, the solutions learned for each individual task resemble those obtained by solving a kernel regression problem, revealing a novel connection between neural networks and kernel methods. It is known that single-task neural network learning problems are equivalent to a minimum norm interpolation problem in a non-Hilbertian Banach space, and that the solutions of such problems are generally non-unique. In contrast, we prove that the solutions to univariate-input, multi-task neural network interpolation problems are almost always unique, and coincide with the solution to a minimum-norm interpolation problem in a Sobolev (Reproducing Kernel) Hilbert Space.


On the consistent estimation of optimal Receiver Operating Characteristic (ROC) curve

Neural Information Processing Systems

Under a standard binary classification setting with possible model misspecification, we study the problem of estimating general Receiver Operating Characteristic (ROC) curve, which is an arbitrary set of false positive rate (FPR) and true positive rate (TPR) pairs. We formally introduce the notion of optimal ROC curve over a general model space. It is argued that any ROC curve estimation methods implemented over the given model space should target the optimal ROC curve over that space. Three popular ROC curve estimation methods are then analyzed at the population level (i.e., when there are infinite number of samples) under both correct and incorrect model specification. Based on our analysis, they are all consistent when the surrogate loss function satisfies certain conditions and the given model space includes all measurable classifiers. Interestingly, some of these conditions are similar to those that are required to ensure classification consistency. When the model space is incorrectly specified, however, we show that only one method leads to consistent estimation of the ROC curve over the chosen model space. We present some numerical results to demonstrate the effects of model misspecification on the performance of various methods in terms of their ROC curve estimates.


Information-Theoretic Safe Exploration with Gaussian Processes

Neural Information Processing Systems

We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.


Achievable Fairness on Your Data With Utility Guarantees

Neural Information Processing Systems

In machine learning fairness, training models that minimize disparity across different sensitive groups often leads to diminished accuracy, a phenomenon known as the fairness-accuracy trade-off. The severity of this trade-off inherently depends on dataset characteristics such as dataset imbalances or biases and therefore, using a uniform fairness requirement across diverse datasets remains questionable. To address this, we present a computationally efficient approach to approximate the fairness-accuracy trade-off curve tailored to individual datasets, backed by rigorous statistical guarantees. By utilizing the You-Only-Train-Once (YOTO) framework, our approach mitigates the computational burden of having to train multiple models when approximating the trade-off curve. Crucially, we introduce a novel methodology for quantifying uncertainty in our estimates, thereby providing practitioners with a robust framework for auditing model fairness while avoiding false conclusions due to estimation errors. Our experiments spanning tabular (e.g., Adult), image (CelebA), and language (Jigsaw) datasets underscore that our approach not only reliably quantifies the optimum achievable trade-offs across various data modalities but also helps detect suboptimality in SOTA fairness methods.



On Tractable ฮฆ-Equilibria in Non-Concave Games

Neural Information Processing Systems

While Online Gradient Descent and other no-regret learning procedures are known to efficiently converge to a coarse correlated equilibrium in games where each agent's utility is concave in their own strategy, this is not the case when utilities are non-concave - a common scenario in machine learning applications involving strategies parameterized by deep neural networks, or when agents' utilities are computed by neural networks, or both. Non-concave games introduce significant game-theoretic and optimization challenges: (i) Nash equilibria may not exist; (ii) local Nash equilibria, though they exist, are intractable; and (iii) mixed Nash, correlated, and coarse correlated equilibria generally have infinite support and are intractable. To sidestep these challenges, we revisit the classical solution concept of ฮฆ-equilibria introduced by Greenwald and Jafari [GJ03], which is guaranteed to exist for an arbitrary set of strategy modifications ฮฆ even in nonconcave games [SL07]. However, the tractability of ฮฆ-equilibria in such games remains elusive. In this paper, we initiate the study of tractable ฮฆ-equilibria in nonconcave games and examine several natural families of strategy modifications. We show that when ฮฆ is finite, there exists an efficient uncoupled learning algorithm that approximates the corresponding ฮฆ-equilibria. Additionally, we explore cases where ฮฆ is infinite but consists of local modifications, showing that Online Gradient Descent can efficiently approximate ฮฆ-equilibria in non-trivial regimes.



CARES: A Comprehensive Benchmark of Trustworthiness in Medical Vision Language Models

Neural Information Processing Systems

Artificial intelligence has significantly impacted medical applications, particularly with the advent of Medical Large Vision Language Models (Med-LVLMs), sparking optimism for the future of automated and personalized healthcare. However, the trustworthiness of Med-LVLMs remains unverified, posing significant risks for future model deployment. In this paper, we introduce CARES and aim to Comprehensively evAluate the tRustworthinESs of Med-LVLMs across the medical domain. We assess the trustworthiness of Med-LVLMs across five dimensions, including trustfulness, fairness, safety, privacy, and robustness. CARES comprises about 41K question-answer pairs in both closed and open-ended formats, covering 16 medical image modalities and 27 anatomical regions. Our analysis reveals that the models consistently exhibit concerns regarding trustworthiness, often displaying factual inaccuracies and failing to maintain fairness across different demographic groups. Furthermore, they are vulnerable to attacks and demonstrate a lack of privacy awareness. We publicly release our benchmark and code in https://cares-ai.github.io/. WARNING: This paper contains model outputs that may be considered offensive.


IDRNet: Intervention-Driven Relation Network for Semantic Segmentation

Neural Information Processing Systems

Co-occurrent visual patterns suggest that pixel relation modeling facilitates dense prediction tasks, which inspires the development of numerous context modeling paradigms, e.g., multi-scale-driven and similarity-driven context schemes. Despite the impressive results, these existing paradigms often suffer from inadequate or ineffective contextual information aggregation due to reliance on large amounts of predetermined priors. To alleviate the issues, we propose a novel Intervention-Driven Relation Network (IDRNet), which leverages a deletion diagnostics procedure to guide the modeling of contextual relations among different pixels. Specifically, we first group pixel-level representations into semantic-level representations with the guidance of pseudo labels and further improve the distinguishability of the grouped representations with a feature enhancement module. Next, a deletion diagnostics procedure is conducted to model relations of these semantic-level representations via perceiving the network outputs and the extracted relations are utilized to guide the semantic-level representations to interact with each other. Finally, the interacted representations are utilized to augment original pixel-level representations for final predictions. Extensive experiments are conducted to validate the effectiveness of IDRNet quantitatively and qualitatively. Notably, our intervention-driven context scheme brings consistent performance improvements to state-of-the-art segmentation frameworks and achieves competitive results on popular benchmark datasets, including ADE20K, COCO-Stuff, PASCAL-Context, LIP, and Cityscapes.