Not enough data to create a plot.
Try a different view from the menu above.
Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
Chiang, Hung-Yueh, Chang, Chi-Chih, Frumkin, Natalia, Wu, Kai-Chiang, Abdelfattah, Mohamed S., Marculescu, Diana
State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input $x$, combined with a per-state-group quantization for input-dependent parameters $B$ and $C$. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms several state-of-the-art SSM quantization methods and delivers 1.3$\times$ and 3$\times$ speed-ups in the pre-filling and generation stages, respectively, while offering 4$\times$ memory reduction with only a $1.6\%$ average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.
Can DeepSeek Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
Ma, Boyi, Zhao, Yanguang, Wang, Jie, Wang, Guankun, Yuan, Kun, Chen, Tong, Bai, Long, Ren, Hongliang
The DeepSeek models have shown exceptional performance in general scene understanding, question-answering (QA), and text generation tasks, owing to their efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of the DeepSeek model in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our empirical study shows that, compared to existing general-purpose multimodal large language models, DeepSeek-VL2 performs better on complex understanding tasks in surgical scenes. Additionally, although DeepSeek-V3 is purely a language model, we find that when image tokens are directly inputted, the model demonstrates better performance on single-sentence QA tasks. However, overall, the DeepSeek models still fall short of meeting the clinical requirements for understanding surgical scenes. Under general prompts, DeepSeek models lack the ability to effectively analyze global surgical concepts and fail to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek models are not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Acharya, Anish, Sanghavi, Sujay, Dimakis, Alexandros G., Dhillon, Inderjit S
Data pruning -- the combinatorial task of selecting a small and representative subset from a large dataset, is crucial for mitigating the enormous computational costs associated with training data-hungry modern deep learning models at scale. Since large scale data collections are invariably noisy, developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. However, existing data pruning methods often fail under high corruption rates due to their reliance on empirical mean estimation, which is highly sensitive to outliers. In response, we propose Geometric Median (GM) Matching, a novel k-subset selection strategy that leverages Geometric Median -- a robust estimator with an optimal breakdown point of 1/2; to enhance resilience against noisy data. Our method iteratively selects a k-subset such that the mean of the subset approximates the GM of the (potentially) noisy dataset, ensuring robustness even under arbitrary corruption. We provide theoretical guarantees, showing that GM Matching enjoys an improved O(1/k) convergence rate -- a quadratic improvement over random sampling, even under arbitrary corruption. Extensive experiments across image classification and image generation tasks demonstrate that GM Matching consistently outperforms existing pruning approaches, particularly in high-corruption settings and at high pruning rates; making it a strong baseline for robust data pruning.
Quantum Generative Models for Image Generation: Insights from MNIST and MedMNIST
Chen, Chi-Sheng, Hou, Wei An, Hu, Hsiang-Wei, Cai, Zhen-Sheng
Quantum generative models offer a promising new direction in machine learning by leveraging quantum circuits to enhance data generation capabilities. In this study, we propose a hybrid quantum-classical image generation framework that integrates variational quantum circuits into a diffusion-based model. To improve training dynamics and generation quality, we introduce two novel noise strategies: intrinsic quantum-generated noise and a tailored noise scheduling mechanism. Our method is built upon a lightweight U-Net architecture, with the quantum layer embedded in the bottleneck module to isolate its effect. We evaluate our model on MNIST and MedMNIST datasets to examine its feasibility and performance. Notably, our results reveal that under limited data conditions (fewer than 100 training images), the quantum-enhanced model generates images with higher perceptual quality and distributional similarity than its classical counterpart using the same architecture. While the quantum model shows advantages on grayscale data such as MNIST, its performance is more nuanced on complex, color-rich datasets like PathMNIST. These findings highlight both the potential and current limitations of quantum generative models and lay the groundwork for future developments in low-resource and biomedical image generation.
Dynamic Assortment Selection and Pricing with Censored Preference Feedback
In this study, we investigate the problem of dynamic multi-product selection and pricing by introducing a novel framework based on a \textit{censored multinomial logit} (C-MNL) choice model. In this model, sellers present a set of products with prices, and buyers filter out products priced above their valuation, purchasing at most one product from the remaining options based on their preferences. The goal is to maximize seller revenue by dynamically adjusting product offerings and prices, while learning both product valuations and buyer preferences through purchase feedback. To achieve this, we propose a Lower Confidence Bound (LCB) pricing strategy. By combining this pricing strategy with either an Upper Confidence Bound (UCB) or Thompson Sampling (TS) product selection approach, our algorithms achieve regret bounds of $\tilde{O}(d^{\frac{3}{2}}\sqrt{T/\kappa})$ and $\tilde{O}(d^{2}\sqrt{T/\kappa})$, respectively. Finally, we validate the performance of our methods through simulations, demonstrating their effectiveness.
VinaBench: Benchmark for Faithful and Consistent Visual Narratives
Gao, Silin, Mathew, Sheryl, Mi, Li, Mamooler, Sepideh, Zhao, Mengjie, Wakaki, Hiromi, Mitsufuji, Yuki, Montariol, Syrielle, Bosselut, Antoine
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
Steering Large Agent Populations using Mean-Field Schrodinger Bridges with Gaussian Mixture Models
Rapakoulias, George, Pedram, Ali Reza, Tsiotras, Panagiotis
The Mean-Field Schrodinger Bridge (MFSB) problem is an optimization problem aiming to find the minimum effort control policy to drive a McKean-Vlassov stochastic differential equation from one probability measure to another. In the context of multiagent control, the objective is to control the configuration of a swarm of identical, interacting cooperative agents, as captured by the time-varying probability measure of their state. Available methods for solving this problem for distributions with continuous support rely either on spatial discretizations of the problem's domain or on approximating optimal solutions using neural networks trained through stochastic optimization schemes. For agents following Linear Time-Varying dynamics, and for Gaussian Mixture Model boundary distributions, we propose a highly efficient parameterization to approximate the solutions of the corresponding MFSB in closed form, without any learning steps. Our proposed approach consists of a mixture of elementary policies, each solving a Gaussian-to-Gaussian Covariance Steering problem from the components of the initial to the components of the terminal mixture. Leveraging the semidefinite formulation of the Covariance Steering problem, our proposed solver can handle probabilistic hard constraints on the system's state, while maintaining numerical tractability. We illustrate our approach on a variety of numerical examples.
Bootstrapped Model Predictive Control
Wang, Yuhang, Guo, Hanwei, Wang, Sizhe, Qian, Long, Lan, Xuguang
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
Efficient Annotator Reliability Assessment with EffiARA
Cook, Owen, Vasilakes, Jake, Roberts, Ian, Song, Xingyi
Data annotation is an essential component of the machine learning pipeline; it is also a costly and time-consuming process. With the introduction of transformer-based models, annotation at the document level is increasingly popular; however, there is no standard framework for structuring such tasks. The EffiARA annotation framework is, to our knowledge, the first project to support the whole annotation pipeline, from understanding the resources required for an annotation task to compiling the annotated dataset and gaining insights into the reliability of individual annotators as well as the dataset as a whole. The framework's efficacy is supported by two previous studies: one improving classification performance through annotator-reliability-based soft label aggregation and sample weighting, and the other increasing the overall agreement among annotators through removing identifying and replacing an unreliable annotator. This work introduces the EffiARA Python package and its accompanying webtool, which provides an accessible graphical user interface for the system. We open-source the EffiARA Python package at https://github.com/MiniEggz/EffiARA and the webtool is publicly accessible at https://effiara.gate.ac.uk.
Optimal Invariant Bases for Atomistic Machine Learning
Allen, Alice E. A., Shinkle, Emily, Bujack, Roxana, Lubbers, Nicholas
The representation of atomic configurations for machine learning models has led to the development of numerous descriptors, often to describe the local environment of atoms. However, many of these representations are incomplete and/or functionally dependent. Incomplete descriptor sets are unable to represent all meaningful changes in the atomic environment. Complete constructions of atomic environment descriptors, on the other hand, often suffer from a high degree of functional dependence, where some descriptors can be written as functions of the others. These redundant descriptors do not provide additional power to discriminate between different atomic environments and increase the computational burden. By employing techniques from the pattern recognition literature to existing atomistic representations, we remove descriptors that are functions of other descriptors to produce the smallest possible set that satisfies completeness. We apply this in two ways: first we refine an existing description, the Atomistic Cluster Expansion. We show that this yields a more efficient subset of descriptors. Second, we augment an incomplete construction based on a scalar neural network, yielding a new message-passing network architecture that can recognize up to 5-body patterns in each neuron by taking advantage of an optimal set of Cartesian tensor invariants. This architecture shows strong accuracy on state-of-the-art benchmarks while retaining low computational cost. Our results not only yield improved models, but point the way to classes of invariant bases that minimize cost while maximizing expressivity for a host of applications.