Not enough data to create a plot.
Try a different view from the menu above.
Supplementary Material
We printed a checkerboard with a 9x10 grid of blocks, each measuring 87 mm x 87 mm. Parameter Value Model Architecture Panoptic-PolarNet Test Batch Size 2 Val Batch Size 2 Test Batch size 1 post proc threshold 0.1 post proc nms kernel 5 post proc top k 100 center loss MSE offset loss L1 center loss weight 100 offset loss weight 10 enable SAP True SAP start epoch 30 SAP rate 0.01 Table 3: Parameters for Panoptic Segmentation model Model mIoU (%) Semantic Segmentation Cylinder3D 67.8 Panoptic Segmentation Panoptic-PolarNet 59.5 4D Panoptic Segmentation 4D-StOP 58.8 Table 6: Models of various tasks used in our experiments and their performances on SemanticKITTI The results reveal a significant variance in performance across different categories. The dataset is divided into 17 and 6 categories, respectively. Ground' and'Roads', as opposed to grouping anything related to ground as a single category. Overall, the performance across these tasks underscores the challenges posed by our dataset's With our dataset, future work can focus on improving the model's capacity to handle such diverse The raw data, processed data, and framework code can be found on our website.
Efficient Minimum Bayes Risk Decoding using Low-Rank Matrix Completion Algorithms
Minimum Bayes Risk (MBR) decoding is a powerful decoding strategy widely used for text generation tasks, but its quadratic computational complexity limits its practical application. This paper presents a novel approach for approximating MBR decoding using matrix completion techniques, focusing on the task of machine translation. We formulate MBR decoding as a matrix completion problem, where the utility metric scores between candidate hypotheses and pseudo-reference translations form a low-rank matrix. First, we empirically show that the scores matrices indeed have a low-rank structure. Then, we exploit this by only computing a random subset of the scores and efficiently recover the missing entries in the matrix by applying the Alternating Least Squares (ALS) algorithm, thereby enabling a fast approximation of the MBR decoding process.
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization Fuchao Wei 1 Department of Computer Science and Technology, Tsinghua University
Anderson mixing (AM) is an acceleration method for fixed-point iterations. Despite its success and wide usage in scientific computing, the convergence theory of AM remains unclear, and its applications to machine learning problems are not well explored. In this paper, by introducing damped projection and adaptive regularization to the classical AM, we propose a Stochastic Anderson Mixing (SAM) scheme to solve nonconvex stochastic optimization problems. Under mild assumptions, we establish the convergence theory of SAM, including the almost sure convergence to stationary points and the worst-case iteration complexity. Moreover, the complexity bound can be improved when randomly choosing an iterate as the output. To further accelerate the convergence, we incorporate a variance reduction technique into the proposed SAM. We also propose a preconditioned mixing strategy for SAM which can empirically achieve faster convergence or better generalization ability. Finally, we apply the SAM method to train various neural networks including the vanilla CNN, ResNets, WideResNet, ResNeXt, DenseNet and LSTM. Experimental results on image classification and language model demonstrate the advantages of our method.