Supplementary Material

Neural Information Processing Systems 

We printed a checkerboard with a 9x10 grid of blocks, each measuring 87 mm x 87 mm. Parameter Value Model Architecture Panoptic-PolarNet Test Batch Size 2 Val Batch Size 2 Test Batch size 1 post proc threshold 0.1 post proc nms kernel 5 post proc top k 100 center loss MSE offset loss L1 center loss weight 100 offset loss weight 10 enable SAP True SAP start epoch 30 SAP rate 0.01 Table 3: Parameters for Panoptic Segmentation model Model mIoU (%) Semantic Segmentation Cylinder3D 67.8 Panoptic Segmentation Panoptic-PolarNet 59.5 4D Panoptic Segmentation 4D-StOP 58.8 Table 6: Models of various tasks used in our experiments and their performances on SemanticKITTI The results reveal a significant variance in performance across different categories. The dataset is divided into 17 and 6 categories, respectively. Ground' and'Roads', as opposed to grouping anything related to ground as a single category. Overall, the performance across these tasks underscores the challenges posed by our dataset's With our dataset, future work can focus on improving the model's capacity to handle such diverse The raw data, processed data, and framework code can be found on our website.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found