Not enough data to create a plot.
Try a different view from the menu above.
General Tensor Spectral Co-clustering for Higher-Order Data
Spectral clustering and co-clustering are well-known techniques in data analysis, and recent work has extended spectral clustering to square, symmetric tensors and hypermatrices derived from a network. We develop a new tensor spectral co-clustering method that simultaneously clusters the rows, columns, and slices of a nonnegative three-mode tensor and generalizes to tensors with any number of modes. The algorithm is based on a new random walk model which we call the super-spacey random surfer. We show that our method out-performs state-of-the-art co-clustering methods on several synthetic datasets with ground truth clusters and then use the algorithm to analyze several real-world datasets.
Learning to learn by gradient descent by gradient descent
The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art.
Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity
Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g.\ using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with confidence intervals obtained using a parametric distribution on parameters of a sparse estimator. Sparse penalties enable statistical guarantees and interpretable models even in high-dimensional and low-sample settings. Characterizing the distributions of sparse models is inherently challenging as the penalties produce a biased estimator.
On Multiplicative Integration with Recurrent Neural Networks
We introduce a general simple structural design called "Multiplicative Integration" (MI) to improve recurrent neural networks (RNNs). MI changes the way of how the information flow gets integrated in the computational building block of an RNN, while introducing almost no extra parameters. The new structure can be easily embedded into many popular RNN models, including LSTMs and GRUs. We empirically analyze its learning behaviour and conduct evaluations on several tasks using different RNN models. Our experimental results demonstrate that Multiplicative Integration can provide a substantial performance boost over many of the existing RNN models.
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. One of the key difficulties is insufficient exploration, resulting in an agent being unable to learn robust policies. Intrinsically motivated agents can explore new behavior for their own sake rather than to directly solve external goals. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical action-value functions, operating at different temporal scales, with goal-driven intrinsically motivated deep reinforcement learning.
High resolution neural connectivity from incomplete tracing data using nonnegative spline regression
Whole-brain neural connectivity data are now available from viral tracing experiments, which reveal the connections between a source injection site and elsewhere in the brain. To achieve this goal, we seek to fit a weighted, nonnegative adjacency matrix among 100 μm brain "voxels" using viral tracer data. Despite a multi-year experimental effort, injections provide incomplete coverage, and the number of voxels in our data is orders of magnitude larger than the number of injections, making the problem severely underdetermined. Furthermore, projection data are missing within the injection site because local connections there are not separable from the injection signal. We use a novel machine-learning algorithm to meet these challenges and develop a spatially explicit, voxel-scale connectivity map of the mouse visual system.
Unsupervised Risk Estimation Using Only Conditional Independence Structure
We show how to estimate a model's test error from unlabeled data, on distributions very different from the training distribution, while assuming only that certain conditional independencies are preserved between train and test. We do not need to assume that the optimal predictor is the same between train and test, or that the true distribution lies in any parametric family. We can also efficiently compute gradients of the estimated error and hence perform unsupervised discriminative learning. Our technical tool is the method of moments, which allows us to exploit conditional independencies in the absence of a fully-specified model. Our framework encompasses a large family of losses including the log and exponential loss, and extends to structured output settings such as conditional random fields.
DeepMath - Deep Sequence Models for Premise Selection
We study the effectiveness of neural sequence models for premise selection in automated theorem proving, a key bottleneck for progress in formalized mathematics. We propose a two stage approach for this task that yields good results for the premise selection task on the Mizar corpus while avoiding the hand-engineered features of existing state-of-the-art models. To our knowledge, this is the first time deep learning has been applied theorem proving on a large scale.
PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions
We propose a novel approach to reduce the computational cost of evaluation of convolutional neural networks, a factor that has hindered their deployment in low-power devices such as mobile phones. Inspired by the loop perforation technique from source code optimization, we speed up the bottleneck convolutional layers by skipping their evaluation in some of the spatial positions. We propose and analyze several strategies of choosing these positions. We demonstrate that perforation can accelerate modern convolutional networks such as AlexNet and VGG-16 by a factor of 2x - 4x. Additionally, we show that perforation is complementary to the recently proposed acceleration method of Zhang et al.
Adaptive Neural Compilation
This paper proposes an adaptive neural-compilation framework to address the problem of learning efficient program. Traditional code optimisation strategies used in compilers are based on applying pre-specified set of transformations that make the code faster to execute without changing its semantics. In contrast, our work involves adapting programs to make them more efficient while considering correctness only on a target input distribution. Our approach is inspired by the recent works on differentiable representations of programs. We show that it is possible to compile programs written in a low-level language to a differentiable representation. We also show how programs in this representation can be optimised to make them efficient on a target distribution of inputs.