Technology
Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias Yue Yu
Large language models (LLMs) have been recently leveraged as training data generators for various natural language processing (NLP) tasks. While previous research has explored different approaches to training models using generated data, they generally rely on simple class-conditional prompts, which may limit the diversity of the generated data and inherit systematic biases of LLM. Thus, we investigate training data generation with diversely attributed prompts (e.g., specifying attributes like length and style), which have the potential to yield diverse and attributed generated data. Our investigation focuses on datasets with high cardinality and diverse domains, wherein we demonstrate that attributed prompts outperform simple class-conditional prompts in terms of the resulting model's performance.
Normal-GS: 3D Gaussian Splatting with Normal-Involved Rendering
Rendering and reconstruction are long-standing topics in computer vision and graphics. Achieving both high rendering quality and accurate geometry is a challenge. Recent advancements in 3D Gaussian Splatting (3DGS) have enabled high-fidelity novel view synthesis at real-time speeds. However, the noisy and discrete nature of 3D Gaussian primitives hinders accurate surface estimation. Previous attempts to regularize 3D Gaussian normals often degrade rendering quality due to the fundamental disconnect between normal vectors and the rendering pipeline in 3DGS-based methods.
Convergence of No-Swap-Regret Dynamics in Self-Play
In this paper, we investigate the question of whether no-swap-regret dynamics have stronger convergence properties in repeated games than regular no-external-regret dynamics. We prove that in almost all symmetric zero-sum games under symmetric initializations of the agents, no-swap-regret dynamics in self-play are guaranteed to converge in a strong "frequent-iterate" sense to the Nash equilibrium: in all but a vanishing fraction of the rounds, the players must play a strategy profile close to a symmetric Nash equilibrium. Remarkably, relaxing any of these three constraints, i.e. by allowing either i) asymmetric initial conditions, or ii) an asymmetric game or iii) no-external regret dynamics suffices to destroy this result and lead to complex non-equilibrating or even chaotic behavior. In a dual type of result, we show that the power of no-swap-regret dynamics comes at a cost of imposing a time-asymmetry on its inputs. While no-external-regret dynamics can be completely determined by the cumulative reward vector received by each player, we show there does not exist any general no-swap-regret dynamics defined on the same state space. In fact, we prove that any no-swap-regret learning algorithm must play a time-asymmetric function over the set of previously observed rewards, ruling out any dynamics based on a symmetric function of the current set of rewards.
Confident Natural Policy Gradient for Local Planning in q
The constrained Markov decision process (CMDP) framework emerges as an important reinforcement learning approach for imposing safety or other critical objectives while maximizing cumulative reward. However, the current understanding of how to learn efficiently in a CMDP environment with a potentially infinite number of states remains under investigation, particularly when function approximation is applied to the value functions.
What to Say and When to Say it: Live Fitness Coaching as a Testbed for Situated Interaction Sunny Panchal 1 Guillaume Berger 1 Antoine Mercier 1
Vision-language models have shown impressive progress in recent years. However, existing models are largely limited to turn-based interactions, where each turn must be stepped (i.e., prompted) by the user. Open-ended, asynchronous interactions, where an AI model may proactively deliver timely responses or feedback based on the unfolding situation in real-time, are an open challenge.
GTA: A Benchmark for General Tool Agents Jize Wang 1,2 Zerun Ma2 Yining Li2
Significant focus has been placed on integrating large language models (LLMs) with various tools in developing general-purpose agents. This poses a challenge to LLMs' tool-use capabilities. However, there are evident gaps between existing tool-use evaluations and real-world scenarios. Current evaluations often use AIgenerated queries, single-step tasks, dummy tools, and text-only interactions, failing to effectively reveal the agents' real-world problem-solving abilities. To address this, we propose GTA, a benchmark for General Tool Agents, featuring three main aspects: (i) Real user queries: human-written queries with simple real-world objectives but implicit tool-use, requiring the LLM to reason the suitable tools and plan the solution steps.
Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning
As a marriage between offline RL and meta-RL, the advent of offline metareinforcement learning (OMRL) has shown great promise in enabling RL agents to multi-task and quickly adapt while acquiring knowledge safely. Among which, context-based OMRL (COMRL) as a popular paradigm, aims to learn a universal policy conditioned on effective task representations. In this work, by examining several key milestones in the field of COMRL, we propose to integrate these seemingly independent methodologies into a unified framework. Most importantly, we show that the pre-existing COMRL algorithms are essentially optimizing the same mutual information objective between the task variable M and its latent representation Z by implementing various approximate bounds. Such theoretical insight offers ample design freedom for novel algorithms. As demonstrations, we propose a supervised and a self-supervised implementation of I(Z; M), and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks, context shift scenarios, data qualities and deep learning architectures. This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning. Given its generality, we envision our framework as a promising offline pre-training paradigm of foundation models for decision making.
IR-CM: The Fast and General-purpose Image Restoration Method Based on Consistency Model
This paper proposes a fast and general-purpose image restoration method. The key idea is to achieve few-step or even one-step inference by conducting consistency distilling or training on a specific mean-reverting stochastic differential equations. Furthermore, based on this, we propose a novel linear-nonlinear decoupling training strategy, significantly enhancing training effectiveness and surpassing consistency distillation on inference performance. This allows our method to be independent of any pre-trained checkpoint, enabling it to serve as an effective standalone imageto-image transformation model. Finally, to avoid trivial solutions and stabilize model training, we introduce a simple origin-guided loss. To validate the effectiveness of our proposed method, we conducted experiments on tasks including image deraining, denoising, deblurring, and low-light image enhancement. The experiments show that our method achieves highly competitive results with only one-step inference. And with just two-step inference, it can achieve state-of-the-art performance in low-light image enhancement. Furthermore, a number of ablation experiments demonstrate the effectiveness of the proposed training strategy.
Panacea: Pareto Alignment via Preference Adaptation for LLMs
However, this convention tends to oversimplify the multidimensional and heterogeneous nature of human preferences, leading to reduced expressivity and even misalignment. This paper presents Panacea, an innovative approach that reframes alignment as a multi-dimensional preference optimization problem. Panacea trains a single model capable of adapting online and Paretooptimally to diverse sets of preferences without the need for further tuning. A major challenge here is using a low-dimensional preference vector to guide the model's behavior, despite it being governed by an overwhelmingly large number of parameters. To address this, Panacea is designed to use singular value decomposition (SVD)-based low-rank adaptation, which allows the preference vector to be simply injected online as singular values. Theoretically, we prove that Panacea recovers the entire Pareto front with common loss aggregation methods under mild conditions. Moreover, our experiments demonstrate, for the first time, the feasibility of aligning a single LLM to represent an exponentially vast spectrum of human preferences through various optimization methods. Our work marks a step forward in effectively and efficiently aligning models to diverse and intricate human preferences in a controllable and Pareto-optimal manner.