Goto

Collaborating Authors

 Information Technology


3D Object Recognition Using Unsupervised Feature Extraction

Neural Information Processing Systems

Intrator (1990) proposed a feature extraction method that is related to recent statistical theory (Huber, 1985; Friedman, 1987), and is based on a biologically motivated model of neuronal plasticity (Bienenstock et al., 1982). This method has been recently applied to feature extraction in the context of recognizing 3D objects from single 2D views (Intrator and Gold, 1991). Here we describe experiments designed to analyze the nature of the extracted features, and their relevance to the theory and psychophysics of object recognition. 1 Introduction Results of recent computational studies of visual recognition (e.g., Poggio and Edelman, 1990) indicate that the problem of recognition of 3D objects can be effectively reformulated in terms of standard pattern classification theory. According to this approach, an object is represented by a few of its 2D views, encoded as clusters in multidimentional space. Recognition of a novel view is then carried out by interpo-460 3D Object Recognition Using Unsupervised Feature Extraction 461 lating among the stored views in the representation space.


The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems

Neural Information Processing Systems

We present an analysis of how the generalization performance (expected test set error) relates to the expected training set error for nonlinear learning systems, such as multilayer perceptrons and radial basis functions.


English Alphabet Recognition with Telephone Speech

Neural Information Processing Systems

The English alphabet is difficult to recognize automatically because many letters sound alike; e.g., BID, PIT, VIZ and F IS. When spoken over the telephone, the information needed to discriminate among several of these pairs, such as F IS, PIT, BID and VIZ, is further reduced due to the limited bandwidth of the channel Speaker-independent recognition of spelled names over the telephone is difficult due to variability caused by channel distortions, different handsets, and a variety of background noises. Finally, when dealing with a large population of speakers, dialect and foreign accents alter letter pronunciations. An R from a Boston speaker may not contain an [r]. Human classification performance on telephone speech underscores the difficulty of the problem.


Constrained Optimization Applied to the Parameter Setting Problem for Analog Circuits

Neural Information Processing Systems

We use constrained optimization to select operating parameters for two circuits: a simple 3-transistor square root circuit, and an analog VLSI artificial cochlea. This automated method uses computer controlled measurement and test equipment to choose chip parameters which minimize the difference between the actual circuit's behavior and a specified goal behavior. Choosing the proper circuit parameters is important to compensate for manufacturing deviations or adjust circuit performance within a certain range. As biologically-motivated analog VLSI circuits become increasingly complex, implying more parameters, setting these parameters by hand will become more cumbersome. Thus an automated parameter setting method can be of great value [Fleischer 90].


Improving the Performance of Radial Basis Function Networks by Learning Center Locations

Neural Information Processing Systems

Three methods for improving the performance of (gaussian) radial basis function (RBF) networks were tested on the NETtaik task. In RBF, a new example is classified by computing its Euclidean distance to a set of centers chosen by unsupervised methods. The application of supervised learning to learn a non-Euclidean distance metric was found to reduce the error rate of RBF networks, while supervised learning of each center's variance resulted in inferior performance. The best improvement in accuracy was achieved by networks called generalized radial basis function (GRBF) networks. In GRBF, the center locations are determined by supervised learning. After training on 1000 words, RBF classifies 56.5% of letters correct, while GRBF scores 73.4% letters correct (on a separate test set). From these and other experiments, we conclude that supervised learning of center locations can be very important for radial basis function learning.


Towards Faster Stochastic Gradient Search

Neural Information Processing Systems

Stochastic gradient descent is a general algorithm which includes LMS, online backpropagation, and adaptive k-means clustering as special cases.


Fault Diagnosis of Antenna Pointing Systems using Hybrid Neural Network and Signal Processing Models

Neural Information Processing Systems

We describe in this paper a novel application of neural networks to system health monitoring of a large antenna for deep space communications. The paper outlines our approach to building a monitoring system using hybrid signal processing and neural network techniques, including autoregressive modelling, pattern recognition, and Hidden Markov models. We discuss several problems which are somewhat generic in applications of this kind - in particular we address the problem of detecting classes which were not present in the training data. Experimental results indicate that the proposed system is sufficiently reliable for practical implementation. 1 Background: The Deep Space Network The Deep Space Network (DSN) (designed and operated by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA)) is unique in terms of providing end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system. The ground component of the DSN consists of three ground station complexes located in California, Spain and Australia, giving full 24-hour coverage for deep space communications.


A Topographic Product for the Optimization of Self-Organizing Feature Maps

Neural Information Processing Systems

Self-organizing feature maps like the Kohonen map (Kohonen, 1989, Ritter et al., 1990) not only provide a plausible explanation for the formation of maps in brains, e.g. in the visual system (Obermayer et al., 1990), but have also been applied to problems like vector quantization, or robot arm control (Martinetz et al., 1990). The underlying organizing principle is the preservation of neighborhood relations. For this principle to lead to a most useful map, the topological structure of the output space must roughly fit the structure of the input data. However, in technical 1141 1142 Bauer, Pawelzik, and Geisel applications this structure is often not a priory known. For this reason several attempts have been made to modify the Kohonen-algorithm such, that not only the weights, but also the output space topology itself is adapted during learning (Kangas et al., 1990, Martinetz et al., 1991). Our contribution is also concerned with optimal output space topologies, but we follow a different approach, which avoids a possibly complicated structure of the output space. First we describe a quantitative measure for the preservation of neighborhood relations in maps, the topographic product P. The topographic product had been invented under the name of" wavering product" in nonlinear dynamics in order to optimize the embeddings of chaotic attractors (Liebert et al., 1991).


Neural Computing with Small Weights

Neural Information Processing Systems

An important issue in neural computation is the dynamic range of weights in the neural networks. Many experimental results on learning indicate that the weights in the networks can grow prohibitively large with the size of the inputs. Here we address this issue by studying the tradeoffs between the depth and the size of weights in polynomial-size networks of linear threshold elements (LTEs). We show that there is an efficient way of simulating a network of LTEs with large weights by a network of LTEs with small weights. To prove these results, we use tools from harmonic analysis of Boolean functions.


Learning Global Direct Inverse Kinematics

Neural Information Processing Systems

S n, the robot has redundant degrees-of-freedom (dof's). In general, control objectives such as the positioning and orienting of the endeffector are specified with respect to task space coordinates; however, the manipulator is typica1ly controlled only in the configuration space.