Goto

Collaborating Authors

 Information Technology


Maximum-Likelihood Continuity Mapping (MALCOM): An Alternative to HMMs

Neural Information Processing Systems

We describe Maximum-Likelihood Continuity Mapping (MALCOM), an alternative to hidden Markov models (HMMs) for processing sequence data such as speech. While HMMs have a discrete "hidden" space constrained by a fixed finite-automaton architecture, MALCOM has a continuous hidden space-a continuity map-that is constrained only by a smoothness requirement on paths through the space. MALCOM fits into the same probabilistic framework for speech recognition as HMMs, but it represents a more realistic model of the speech production process. To evaluate the extent to which MALCOM captures speech production information, we generated continuous speech continuity maps for three speakers and used the paths through them to predict measured speech articulator data. The median correlation between the MALCOM paths obtained from only the speech acoustics and articulator measurements was 0.77 on an independent test set not used to train MALCOM or the predictor.


Exploiting Generative Models in Discriminative Classifiers

Neural Information Processing Systems

On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often result in classification performance superior to that of the model based approaches. An ideal classifier should combine these two complementary approaches. In this paper, we develop a natural way of achieving this combination by deriving kernel functions for use in discriminative methods such as support vector machines from generative probability models.



Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm

Neural Information Processing Systems

We present the CEM (Conditional Expectation Maximi::ation) algorithm as an extension of the EM (Expectation M aximi::ation) algorithm to conditional density estimation under missing data. A bounding and maximization process is given to specifically optimize conditional likelihood instead of the usual joint likelihood. We apply the method to conditioned mixture models and use bounding techniques to derive the model's update rules. Monotonic convergence, computational efficiency and regression results superior to EM are demonstrated.


Non-Linear PI Control Inspired by Biological Control Systems

Neural Information Processing Systems

A nonlinear modification to PI control is motivated by a model of a signal transduction pathway active in mammalian blood pressure regulation. This control algorithm, labeled PII (proportional with intermittent integral), is appropriate for plants requiring exact set-point matching and disturbance attenuation in the presence of infrequent step changes in load disturbances or set-point. The proportional aspect of the controller is independently designed to be a disturbance attenuator and set-point matching is achieved by intermittently invoking an integral controller. The mechanisms observed in the Angiotensin 11/ AT1 signaling pathway are used to control the switching of the integral control. Improved performance over PI control is shown on a model of cyc1opentenol production. A sign change in plant gain at the desirable operating point causes traditional PI control to result in an unstable system.


Finite-Sample Convergence Rates for Q-Learning and Indirect Algorithms

Neural Information Processing Systems

In this paper, we address two issues of longstanding interest in the reinforcement learning literature. First, what kinds of performance guarantees can be made for Q-learning after only a finite number of actions? Second, what quantitative comparisons can be made between Q-learning and model-based (indirect) approaches, which use experience to estimate next-state distributions for off-line value iteration? We first show that both Q-learning and the indirect approach enjoy rather rapid convergence to the optimal policy as a function of the number of state transitions observed.


Bayesian PCA

Neural Information Processing Systems

The technique of principal component analysis (PCA) has recently been expressed as the maximum likelihood solution for a generative latent variable model. In this paper we use this probabilistic reformulation as the basis for a Bayesian treatment of PCA. Our key result is that effective dimensionality of the latent space (equivalent to the number of retained principal components) can be determined automatically as part of the Bayesian inference procedure. An important application of this framework is to mixtures of probabilistic PCA models, in which each component can determine its own effective complexity.


Adding Constrained Discontinuities to Gaussian Process Models of Wind Fields

Neural Information Processing Systems

Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling.


Restructuring Sparse High Dimensional Data for Effective Retrieval

Neural Information Processing Systems

The task in text retrieval is to find the subset of a collection of documents relevant to a user's information request, usually expressed as a set of words. Classically, documents and queries are represented as vectors of word counts. In its simplest form, relevance is defined to be the dot product between a document and a query vector-a measure of the number of common terms. A central difficulty in text retrieval is that the presence or absence of a word is not sufficient to determine relevance to a query. Linear dimensionality reduction has been proposed as a technique for extracting underlying structure from the document collection.


Optimizing Correlation Algorithms for Hardware-Based Transient Classification

Neural Information Processing Systems

The perfonnance of dedicated VLSI neural processing hardware depends critically on the design of the implemented algorithms. We have previously proposed an algorithm for acoustic transient classification [1]. Having implemented and demonstrated this algorithm in a mixed-mode architecture, we now investigate variants on the algorithm, using time and frequency channel differencing, input and output nonnalization, and schemes to binarize and train the template values, with the goal of achieving optimal classification perfonnance for the chosen hardware.