Plotting

 Information Technology


Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization

Neural Information Processing Systems

Generating ligand molecules for specific protein targets, known as structure-based drug design, is a fundamental problem in therapeutics development and biological discovery. Recently, target-aware generative models, especially diffusion models, have shown great promise in modeling protein-ligand interactions and generating candidate drugs. However, existing models primarily focus on learning the chemical distribution of all drug candidates, which lacks effective steerability on the chemical quality of model generations.


Policy Optimization via Importance Sampling

Neural Information Processing Systems

Policy optimization is an effective reinforcement learning approach to solve continuous control tasks. Recent achievements have shown that alternating online and offline optimization is a successful choice for efficient trajectory reuse. However, deciding when to stop optimizing and collect new trajectories is non-trivial, as it requires to account for the variance of the objective function estimate. In this paper, we propose a novel, model-free, policy search algorithm, POIS, applicable in both action-based and parameter-based settings. We first derive a high-confidence bound for importance sampling estimation; then we define a surrogate objective function, which is optimized offline whenever a new batch of trajectories is collected. Finally, the algorithm is tested on a selection of continuous control tasks, with both linear and deep policies, and compared with state-of-the-art policy optimization methods.


DEX: Data Channel Extension for Efficient CNN Inference on Tiny AI Accelerators 12

Neural Information Processing Systems

Tiny machine learning (TinyML) aims to run ML models on small devices and is increasingly favored for its enhanced privacy, reduced latency, and low cost. Recently, the advent of tiny AI accelerators has revolutionized the TinyML field by significantly enhancing hardware processing power. These accelerators, equipped with multiple parallel processors and dedicated per-processor memory instances, offer substantial performance improvements over traditional microcontroller units (MCUs).


Thinned random measures for sparse graphs with overlapping communities

Neural Information Processing Systems

Network models for exchangeable arrays, including most stochastic block models, generate dense graphs with a limited ability to capture many characteristics of real-world social and biological networks. A class of models based on completely random measures like the generalized gamma process (GGP) have recently addressed some of these limitations. We propose a framework for thinning edges from realizations of GGP random graphs that models observed links via nodes' overall propensity to interact, as well as the similarity of node memberships within a large set of latent communities. Our formulation allows us to learn the number of communities from data, and enables efficient Monte Carlo methods that scale linearly with the number of observed edges, and thus (unlike dense block models) sub-quadratically with the number of entities or nodes. We compare to alternative models for both dense and sparse networks, and demonstrate effective recovery of latent community structure for real-world networks with thousands of nodes.


ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction Supplementary Material

Neural Information Processing Systems

ChaosBench is published under the open source GNU General Public License. Further development and potential updates discussed in the limitations section will take place on the ChaosBench page. Furthermore, we are committed to maintaining and preserving the ChaosBench benchmark. Ongoing maintenance also includes tracking and resolving issues identified by the broader community after release. User feedback will be closely monitored via the GitHub issue tracker. All assets are hosted on GitHub and HuggingFace, which guarantees reliable and stable storage. Dataset: All our dataset, present and future (e.g., with more years, multi-resolution support, etc) are available at https://huggingface.co/datasets/LEAP/ChaosBench.


Object landmark discovery through unsupervised adaptation

Neural Information Processing Systems

This paper proposes a method to ease the unsupervised learning of object landmark detectors. Similarly to previous methods, our approach is fully unsupervised in a sense that it does not require or make any use of annotated landmarks for the target object category. Contrary to previous works, we do however assume that a landmark detector, which has already learned a structured representation for a given object category in a fully supervised manner, is available. Under this setting, our main idea boils down to adapting the given pre-trained network to the target object categories in a fully unsupervised manner. To this end, our method uses the pre-trained network as a core which remains frozen and does not get updated during training, and learns, in an unsupervised manner, only a projection matrix to perform the adaptation to the target categories. By building upon an existing structured representation learned in a supervised manner, the optimization problem solved by our method is much more constrained with significantly less parameters to learn which seems to be important for the case of unsupervised learning. We show that our method surpasses fully unsupervised techniques trained from scratch as well as a strong baseline based on fine-tuning, and produces state-of-the-art results on several datasets. Code can be found at tiny.cc/GitHub-Unsupervised.


97c99dd2a042908aabc0bafc64ddc028-AuthorFeedback.pdf

Neural Information Processing Systems

All Rs: Thank you for your insightful comments. These results clearly illustrate the importance of training a powerful core network. GC2: Accuracy vs # training images To this end, we chose a random subset of 10, 100, and 1000 images. This shows that our method is more effective with limited training data. We will include an in-depth study.


Hypotheses Paradise: An Open and Strong Baseline for Speech Recognition with Large Language Models Chen Chen 1, Chao-Han Huck Yang 2

Neural Information Processing Systems

Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription.


HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models Chen Chen 1, Chao-Han Huck Yang 2,3

Neural Information Processing Systems

Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription.


TinyTTA: Efficient Test-Time Adaptation via Early-Exit Ensembles on Edge Devices

Neural Information Processing Systems

The increased adoption of Internet of Things (IoT) devices has led to the generation of large data streams with applications in healthcare, sustainability, and robotics. In some cases, deep neural networks have been deployed directly on these resource-constrained units to limit communication overhead, increase efficiency and privacy, and enable real-time applications. However, a common challenge in this setting is the continuous adaptation of models necessary to accommodate changing environments, i.e., data distribution shifts. Test-time adaptation (TTA) has emerged as one potential solution, but its validity has yet to be explored in resource-constrained hardware settings, such as those involving microcontroller units (MCUs). TTA on constrained devices generally suffers from i) memory overhead due to the full backpropagation of a large pre-trained network, ii) lack of support for normalization layers on MCUs, and iii) either memory exhaustion with large batch sizes required for updating or poor performance with small batch sizes. In this paper, we propose TinyTTA, to enable, for the first time, efficient TTA on constrained devices with limited memory. To address the limited memory constraints, we introduce a novel self-ensemble and batch-agnostic early-exit strategy for TTA, which enables continuous adaptation with small batch sizes for reduced memory usage, handles distribution shifts, and improves latency efficiency. Moreover, we develop the TinyTTA Engine, a first-of-its-kind MCU library that enables on-device TTA.