Goto

Collaborating Authors

 Sensing and Signal Processing


Geometric Analysis of Nonlinear Manifold Clustering Tianjiao Ding

Neural Information Processing Systems

Manifold clustering is an important problem in motion and video segmentation, natural image clustering, and other applications where high-dimensional data lie on multiple, low-dimensional, nonlinear manifolds. While current state-ofthe-art methods on large-scale datasets such as CIFAR provide good empirical performance, they do not have any proof of theoretical correctness. In this work, we propose a method that clusters data belonging to a union of nonlinear manifolds.


Fine-grained Image-to-LiDAR Contrastive Distillation with Visual Foundation Models

Neural Information Processing Systems

Contrastive image-to-LiDAR knowledge transfer, commonly used for learning 3D representations with synchronized images and point clouds, often faces a selfconflict dilemma. This issue arises as contrastive losses unintentionally dissociate features of unmatched points and pixels that share semantic labels, compromising the integrity of learned representations. To overcome this, we harness Visual Foundation Models (VFMs), which have revolutionized the acquisition of pixel-level semantics, to enhance 3D representation learning. Specifically, we utilize offthe-shelf VFMs to generate semantic labels for weakly-supervised pixel-to-point contrastive distillation. Additionally, we employ von Mises-Fisher distributions to structure the feature space, ensuring semantic embeddings within the same class remain consistent across varying inputs. Furthermore, we adapt sampling probabilities of points to address imbalances in spatial distribution and category frequency, promoting comprehensive and balanced learning. Extensive experiments demonstrate that our approach mitigates the challenges posed by traditional methods and consistently surpasses existing image-to-LiDAR contrastive distillation methods in downstream tasks. Code is available at https://github.com/Eaphan/OLIVINE.


Where's Waldo: Diffusion Features For Personalized Segmentation and Retrieval

Neural Information Processing Systems

Personalized retrieval and segmentation aim to locate specific instances within a dataset based on an input image and a short description of the reference instance. While supervised methods are effective, they require extensive labeled data for training. Recently, self-supervised foundation models have been introduced to these tasks showing comparable results to supervised methods. However, a significant flaw in these models is evident: they struggle to locate a desired instance when other instances within the same class are presented. In this paper, we explore text-to-image diffusion models for these tasks. Specifically, we propose a novel approach called PDM for Personalized Diffusion Features Matching, that leverages intermediate features of pre-trained text-to-image models for personalization tasks without any additional training. PDM demonstrates superior performance on popular retrieval and segmentation benchmarks, outperforming even super-Correspondence to: Dvir Samuel .


Generalizable One-shot 3D Neural Head Avatar

Neural Information Processing Systems

We present a method that reconstructs and animates a 3D head avatar from a singleview portrait image. Existing methods either involve time-consuming optimization for a specific person with multiple images, or they struggle to synthesize intricate appearance details beyond the facial region. To address these limitations, we propose a framework that not only generalizes to unseen identities based on a single-view image without requiring person-specific optimization, but also captures characteristic details within and beyond the face area (e.g.




RClicks: Realistic Click Simulation for Benchmarking Interactive Segmentation Anton Antonov 1 Denis Shepelev 1 1, 2

Neural Information Processing Systems

The emergence of Segment Anything (SAM) sparked research interest in the field of interactive segmentation, especially in the context of image editing tasks and speeding up data annotation. Unlike common semantic segmentation, interactive segmentation methods allow users to directly influence their output through prompts (e.g.



FewViewGS: Gaussian Splatting with Few View Matching and Multi-stage Training

Neural Information Processing Systems

The field of novel view synthesis from images has seen rapid advancements with the introduction of Neural Radiance Fields (NeRF) and more recently with 3D Gaussian Splatting. Gaussian Splatting became widely adopted due to its efficiency and ability to render novel views accurately. While Gaussian Splatting performs well when a sufficient amount of training images are available, its unstructured explicit representation tends to overfit in scenarios with sparse input images, resulting in poor rendering performance. To address this, we present a 3D Gaussian-based novel view synthesis method using sparse input images that can accurately render the scene from the viewpoints not covered by the training images. We propose a multi-stage training scheme with matching-based consistency constraints imposed on the novel views without relying on pre-trained depth estimation or diffusion models. This is achieved by using the matches of the available training images to supervise the generation of the novel views sampled between the training frames with color, geometry, and semantic losses. In addition, we introduce a locality preserving regularization for 3D Gaussians which removes rendering artifacts by preserving the local color structure of the scene. Evaluation on synthetic and realworld datasets demonstrates competitive or superior performance of our method in few-shot novel view synthesis compared to existing state-of-the-art methods.


RLE: A Unified Perspective of Data Augmentation for Cross-Spectral Re-identification

Neural Information Processing Systems

This paper makes a step towards modeling the modality discrepancy in the crossspectral re-identification task. Based on the Lambertain model, we observe that the non-linear modality discrepancy mainly comes from diverse linear transformations acting on the surface of different materials. From this view, we unify all data augmentation strategies for cross-spectral re-identification by mimicking such local linear transformations and categorizing them into moderate transformation and radical transformation. By extending the observation, we propose a Random Linear Enhancement (RLE) strategy which includes Moderate Random Linear Enhancement (MRLE) and Radical Random Linear Enhancement (RRLE) to push the boundaries of both types of transformation. Moderate Random Linear Enhancement is designed to provide diverse image transformations that satisfy the original linear correlations under constrained conditions, whereas Radical Random Linear Enhancement seeks to generate local linear transformations directly without relying on external information. The experimental results not only demonstrate the superiority and effectiveness of RLE but also confirm its great potential as a general-purpose data augmentation for cross-spectral re-identification. The code is available at https://github.com/stone96123/RLE.