Goto

Collaborating Authors

 Communications: Instructional Materials


A Preliminary Exploration of YouTubers' Use of Generative-AI in Content Creation

arXiv.org Artificial Intelligence

Content creators increasingly utilize generative artificial intelligence (Gen-AI) on platforms such as YouTube, TikTok, Instagram, and various blogging sites to produce imaginative images, AI-generated videos, and articles using Large Language Models (LLMs). Despite its growing popularity, there remains an underexplored area concerning the specific domains where AI-generated content is being applied, and the methodologies content creators employ with Gen-AI tools during the creation process. This study initially explores this emerging area through a qualitative analysis of 68 YouTube videos demonstrating Gen-AI usage. Our research focuses on identifying the content domains, the variety of tools used, the activities performed, and the nature of the final products generated by Gen-AI in the context of user-generated content.


On the Efficient Marginalization of Probabilistic Sequence Models

arXiv.org Machine Learning

Real-world data often exhibits sequential dependence, across diverse domains such as human behavior, medicine, finance, and climate modeling. Probabilistic methods capture the inherent uncertainty associated with prediction in these contexts, with autoregressive models being especially prominent. This dissertation focuses on using autoregressive models to answer complex probabilistic queries that go beyond single-step prediction, such as the timing of future events or the likelihood of a specific event occurring before another. In particular, we develop a broad class of novel and efficient approximation techniques for marginalization in sequential models that are model-agnostic. These techniques rely solely on access to and sampling from next-step conditional distributions of a pre-trained autoregressive model, including both traditional parametric models as well as more recent neural autoregressive models. Specific approaches are presented for discrete sequential models, for marked temporal point processes, and for stochastic jump processes, each tailored to a well-defined class of informative, long-range probabilistic queries.


Introduction to Algogens

arXiv.org Artificial Intelligence

This book introduces the concept of Algogens, a promising integration of generative AI with traditional algorithms aimed at improving problem-solving techniques across various fields. It provides an accessible overview of how Algogens combine AI's innovative potential with algorithms' reliability to tackle complex challenges more effectively than either could alone. The text explores the basics of Algogens, their development, applications, and advantages, such as better adaptability and efficiency. Through examples and case studies, readers will learn about Algogens' practical uses today and their potential for future cybersecurity, healthcare, and environmental science innovation. Acknowledging new technologies' challenges and ethical considerations, the book offers a balanced look at the prospects and obstacles facing Algogens. It invites a broad audience, including experts and newcomers, to engage with the topic and consider Algogens' role in advancing our problem-solving capabilities. This work is presented as a starting point for anyone interested in the intersection of AI and algorithms, encouraging further exploration and discussion on this emerging field. It aims to spark curiosity and contribute to the ongoing conversation about how technology can evolve to meet the complex demands of the AI era.


User Modeling and User Profiling: A Comprehensive Survey

arXiv.org Artificial Intelligence

The integration of artificial intelligence (AI) into daily life, particularly through information retrieval and recommender systems, has necessitated advanced user modeling and profiling techniques to deliver personalized experiences. These techniques aim to construct accurate user representations based on the rich amounts of data generated through interactions with these systems. This paper presents a comprehensive survey of the current state, evolution, and future directions of user modeling and profiling research. We provide a historical overview, tracing the development from early stereotype models to the latest deep learning techniques, and propose a novel taxonomy that encompasses all active topics in this research area, including recent trends. Our survey highlights the paradigm shifts towards more sophisticated user profiling methods, emphasizing implicit data collection, multi-behavior modeling, and the integration of graph data structures. We also address the critical need for privacy-preserving techniques and the push towards explainability and fairness in user modeling approaches. By examining the definitions of core terminology, we aim to clarify ambiguities and foster a clearer understanding of the field by proposing two novel encyclopedic definitions of the main terms. Furthermore, we explore the application of user modeling in various domains, such as fake news detection, cybersecurity, and personalized education. This survey serves as a comprehensive resource for researchers and practitioners, offering insights into the evolution of user modeling and profiling and guiding the development of more personalized, ethical, and effective AI systems.


FedKit: Enabling Cross-Platform Federated Learning for Android and iOS

arXiv.org Artificial Intelligence

We present FedKit, a federated learning (FL) system tailored for cross-platform FL research on Android and iOS devices. FedKit pipelines cross-platform FL development by enabling model conversion, hardware-accelerated training, and cross-platform model aggregation. Our FL workflow supports flexible machine learning operations (MLOps) in production, facilitating continuous model delivery and training. We have deployed FedKit in a real-world use case for health data analysis on university campuses, demonstrating its effectiveness. FedKit is open-source at https://github.com/FedCampus/FedKit.


Black Box: a new podcast series about AI and us โ€“ trailer

The Guardian

In rural Norway, a young woman's boyfriend forgets who she is overnight. In Detroit, a man is arrested for a crime, but he was never there. In a Spanish town, disturbing pictures of young girls have appeared, but no one knows who is behind them. In this new series from the Guardian, we'll explore what it is that connects all these stories: the collision between people and artificial intelligence.


Helping university students to choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization

arXiv.org Artificial Intelligence

The wide availability of specific courses together with the flexibility of academic plans in university studies reveal the importance of Recommendation Systems (RSs) in this area. These systems appear as tools that help students to choose courses that suit to their personal interests and their academic performance. This paper presents a hybrid RS that combines Collaborative Filtering (CF) and Content-based Filtering (CBF) using multiple criteria related both to student and course information to recommend the most suitable courses to the students. A Genetic Algorithm (GA) has been developed to automatically discover the optimal RS configuration which include both the most relevant criteria and the configuration of the rest of parameters. The experimental study has used real information of Computer Science Degree of University of Cordoba (Spain) including information gathered from students during three academic years, counting on 2500 entries of 95 students and 63 courses. Experimental results show a study of the most relevant criteria for the course recommendation, the importance of using a hybrid model that combines both student information and course information to increase the reliability of the recommendations as well as an excellent performance compared to previous models.


Antagonistic AI

arXiv.org Artificial Intelligence

The vast majority of discourse around AI development assumes that subservient, "moral" models aligned with "human values" are universally beneficial -- in short, that good AI is sycophantic AI. We explore the shadow of the sycophantic paradigm, a design space we term antagonistic AI: AI systems that are disagreeable, rude, interrupting, confrontational, challenging, etc. -- embedding opposite behaviors or values. Far from being "bad" or "immoral," we consider whether antagonistic AI systems may sometimes have benefits to users, such as forcing users to confront their assumptions, build resilience, or develop healthier relational boundaries. Drawing from formative explorations and a speculative design workshop where participants designed fictional AI technologies that employ antagonism, we lay out a design space for antagonistic AI, articulating potential benefits, design techniques, and methods of embedding antagonistic elements into user experience. Finally, we discuss the many ethical challenges of this space and identify three dimensions for the responsible design of antagonistic AI -- consent, context, and framing.


Machine Intelligence in Africa: a survey

arXiv.org Artificial Intelligence

In the last 5 years, the availability of large audio datasets in African countries has opened unlimited opportunities to build machine intelligence (MI) technologies that are closer to the people and speak, learn, understand, and do businesses in local languages, including for those who cannot read and write. Unfortunately, these audio datasets are not fully exploited by current MI tools, leaving several Africans out of MI business opportunities. Additionally, many state-of-the-art MI models are not culture-aware, and the ethics of their adoption indexes are questionable. The lack thereof is a major drawback in many applications in Africa. This paper summarizes recent developments in machine intelligence in Africa from a multi-layer multiscale and culture-aware ethics perspective, showcasing MI use cases in 54 African countries through 400 articles on MI research, industry, government actions, as well as uses in art, music, the informal economy, and small businesses in Africa. The survey also opens discussions on the reliability of MI rankings and indexes in the African continent as well as algorithmic definitions of unclear terms used in MI.


At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers in 6G Wireless Intelligence

arXiv.org Artificial Intelligence

The majority of data-driven wireless research leans heavily on discriminative AI (DAI) that requires vast real-world datasets. Unlike the DAI, Generative AI (GenAI) pertains to generative models (GMs) capable of discerning the underlying data distribution, patterns, and features of the input data. This makes GenAI a crucial asset in wireless domain wherein real-world data is often scarce, incomplete, costly to acquire, and hard to model or comprehend. With these appealing attributes, GenAI can replace or supplement DAI methods in various capacities. Accordingly, this combined tutorial-survey paper commences with preliminaries of 6G and wireless intelligence by outlining candidate 6G applications and services, presenting a taxonomy of state-of-the-art DAI models, exemplifying prominent DAI use cases, and elucidating the multifaceted ways through which GenAI enhances DAI. Subsequently, we present a tutorial on GMs by spotlighting seminal examples such as generative adversarial networks, variational autoencoders, flow-based GMs, diffusion-based GMs, generative transformers, large language models, to name a few. Contrary to the prevailing belief that GenAI is a nascent trend, our exhaustive review of approximately 120 technical papers demonstrates the scope of research across core wireless research areas, including physical layer design; network optimization, organization, and management; network traffic analytics; cross-layer network security; and localization & positioning. Furthermore, we outline the central role of GMs in pioneering areas of 6G network research, including semantic/THz/near-field communications, ISAC, extremely large antenna arrays, digital twins, AI-generated content services, mobile edge computing and edge AI, adversarial ML, and trustworthy AI. Lastly, we shed light on the multifarious challenges ahead, suggesting potential strategies and promising remedies.