Goto

Collaborating Authors

 Communications: Instructional Materials


Intent-Aware DRL-Based Uplink Dynamic Scheduler for 5G-NR

arXiv.org Artificial Intelligence

We investigate the problem of supporting Industrial Internet of Things user equipment (IIoT UEs) with intent (i.e., requested quality of service (QoS)) and random traffic arrival. A deep reinforcement learning (DRL) based centralized dynamic scheduler for time-frequency resources is proposed to learn how to schedule the available communication resources among the IIoT UEs. The proposed scheduler leverages an RL framework to adapt to the dynamic changes in the wireless communication system and traffic arrivals. Moreover, a graph-based reduction scheme is proposed to reduce the state and action space of the RL framework to allow fast convergence and a better learning strategy. Simulation results demonstrate the effectiveness of the proposed intelligent scheduler in guaranteeing the expressed intent of IIoT UEs compared to several traditional scheduling schemes, such as round-robin, semi-static, and heuristic approaches. The proposed scheduler also outperforms the contention-free and contention-based schemes in maximizing the number of successfully computed tasks.


Decoding excellence: Mapping the demand for psychological traits of operations and supply chain professionals through text mining

arXiv.org Artificial Intelligence

The current study proposes an innovative methodology for the profiling of psychological traits of Operations Management (OM) and Supply Chain Management (SCM) professionals. We use innovative methods and tools of text mining and social network analysis to map the demand for relevant skills from a set of job descriptions, with a focus on psychological characteristics. The proposed approach aims to evaluate the market demand for specific traits by combining relevant psychological constructs, text mining techniques, and an innovative measure, namely, the Semantic Brand Score. We apply the proposed methodology to a dataset of job descriptions for OM and SCM professionals, with the objective of providing a mapping of their relevant required skills, including psychological characteristics. In addition, the analysis is then detailed by considering the region of the organization that issues the job description, its organizational size, and the seniority level of the open position in order to understand their nuances. Finally, topic modeling is used to examine key components and their relative significance in job descriptions. By employing a novel methodology and considering contextual factors, we provide an innovative understanding of the attitudinal traits that differentiate professionals. This research contributes to talent management, recruitment practices, and professional development initiatives, since it provides new figures and perspectives to improve the effectiveness and success of Operations Management and Supply Chain Management professionals.


FastPerson: Enhancing Video Learning through Effective Video Summarization that Preserves Linguistic and Visual Contexts

arXiv.org Artificial Intelligence

Quickly understanding lengthy lecture videos is essential for learners with limited time and interest in various topics to improve their learning efficiency. To this end, video summarization has been actively researched to enable users to view only important scenes from a video. However, these studies focus on either the visual or audio information of a video and extract important segments in the video. Therefore, there is a risk of missing important information when both the teacher's speech and visual information on the blackboard or slides are important, such as in a lecture video. To tackle this issue, we propose FastPerson, a video summarization approach that considers both the visual and auditory information in lecture videos. FastPerson creates summary videos by utilizing audio transcriptions along with on-screen images and text, minimizing the risk of overlooking crucial information for learners. Further, it provides a feature that allows learners to switch between the summary and original videos for each chapter of the video, enabling them to adjust the pace of learning based on their interests and level of understanding. We conducted an evaluation with 40 participants to assess the effectiveness of our method and confirmed that it reduced viewing time by 53\% at the same level of comprehension as that when using traditional video playback methods.


Amazon knows you don't have the AI skills for tomorrow, and has a plan to help

ZDNet

Most people encounter Amazon when someone in a truck brings a package to the door. But Amazon is one of the most innovative companies on the planet, with major investments in infrastructure, supply chain, IT, and transportation. Of particular interest to our ongoing discussion about AI is the fact that Amazon has been incorporating AI and machine learning in its processes since long before "generative AI" was a hot buzzword. Also: Want to work in AI? How to pivot your career in 5 steps Now, however, Amazon is taking that AI expertise and bringing it to classrooms and virtual learning experiences. We had the opportunity to chat with Victor Reinoso, global director of education philanthropy at Amazon, about the future of education and AI. In addition to heading up Amazon's education philanthropy operation, Reinoso was deputy mayor of Washington D.C., which included oversight of the city's 1 billion education budget.


(Un)making AI Magic: a Design Taxonomy

arXiv.org Artificial Intelligence

This paper examines the role that enchantment plays in the design of AI things by constructing a taxonomy of design approaches that increase or decrease the perception of magic and enchantment. We start from the design discourse surrounding recent developments in AI technologies, highlighting specific interaction qualities such as algorithmic uncertainties and errors and articulating relations to the rhetoric of magic and supernatural thinking. Through analyzing and reflecting upon 52 students' design projects from two editions of a Master course in design and AI, we identify seven design principles and unpack the effects of each in terms of enchantment and disenchantment. We conclude by articulating ways in which this taxonomy can be approached and appropriated by design/HCI practitioners, especially to support exploration and reflexivity.


Enhancing Law Enforcement Training: A Gamified Approach to Detecting Terrorism Financing

arXiv.org Artificial Intelligence

Tools for fighting cyber-criminal activities using new technologies are promoted and deployed every day. However, too often, they are unnecessarily complex and hard to use, requiring deep domain and technical knowledge. These characteristics often limit the engagement of law enforcement and end-users in these technologies that, despite their potential, remain misunderstood. For this reason, in this study, we describe our experience in combining learning and training methods and the potential benefits of gamification to enhance technology transfer and increase adult learning. In fact, in this case, participants are experienced practitioners in professions/industries that are exposed to terrorism financing (such as Law Enforcement Officers, Financial Investigation Officers, private investigators, etc.) We define training activities on different levels for increasing the exchange of information about new trends and criminal modus operandi among and within law enforcement agencies, intensifying cross-border cooperation and supporting efforts to combat and prevent terrorism funding activities. On the other hand, a game (hackathon) is designed to address realistic challenges related to the dark net, crypto assets, new payment systems and dark web marketplaces that could be used for terrorist activities. The entire methodology was evaluated using quizzes, contest results, and engagement metrics. In particular, training events show about 60% of participants complete the 11-week training course, while the Hackathon results, gathered in two pilot studies (Madrid and The Hague), show increasing expertise among the participants (progression in the achieved points on average). At the same time, more than 70% of participants positively evaluate the use of the gamification approach, and more than 85% of them consider the implemented Use Cases suitable for their investigations.


Analyzing the Impact of Partial Sharing on the Resilience of Online Federated Learning Against Model Poisoning Attacks

arXiv.org Artificial Intelligence

We scrutinize the resilience of the partial-sharing online federated learning (PSO-Fed) algorithm against model-poisoning attacks. PSO-Fed reduces the communication load by enabling clients to exchange only a fraction of their model estimates with the server at each update round. Partial sharing of model estimates also enhances the robustness of the algorithm against model-poisoning attacks. To gain better insights into this phenomenon, we analyze the performance of the PSO-Fed algorithm in the presence of Byzantine clients, malicious actors who may subtly tamper with their local models by adding noise before sharing them with the server. Through our analysis, we demonstrate that PSO-Fed maintains convergence in both mean and mean-square senses, even under the strain of model-poisoning attacks. We further derive the theoretical mean square error (MSE) of PSO-Fed, linking it to various parameters such as stepsize, attack probability, number of Byzantine clients, client participation rate, partial-sharing ratio, and noise variance. We also show that there is a non-trivial optimal stepsize for PSO-Fed when faced with model-poisoning attacks. The results of our extensive numerical experiments affirm our theoretical assertions and highlight the superior ability of PSO-Fed to counteract Byzantine attacks, outperforming other related leading algorithms.


Avoiding Imposters and Delinquents: Adversarial Crowdsourcing and Peer Prediction

Neural Information Processing Systems

We consider a crowdsourcing model in which n workers are asked to rate the quality of n items previously generated by other workers. An unknown set of αn workers generate reliable ratings, while the remaining workers may behave arbitrarily and possibly adversarially. The manager of the experiment can also manually evaluate the quality of a small number of items, and wishes to curate together almost all of the high-quality items with at most an ɛ fraction of low-quality items.


TutoAI: A Cross-domain Framework for AI-assisted Mixed-media Tutorial Creation on Physical Tasks

arXiv.org Artificial Intelligence

Mixed-media tutorials, which integrate videos, images, text, and diagrams to teach procedural skills, offer more browsable alternatives than timeline-based videos. However, manually creating such tutorials is tedious, and existing automated solutions are often restricted to a particular domain. While AI models hold promise, it is unclear how to effectively harness their powers, given the multi-modal data involved and the vast landscape of models. We present TutoAI, a cross-domain framework for AI-assisted mixed-media tutorial creation on physical tasks. First, we distill common tutorial components by surveying existing work; then, we present an approach to identify, assemble, and evaluate AI models for component extraction; finally, we propose guidelines for designing user interfaces (UI) that support tutorial creation based on AI-generated components. We show that TutoAI has achieved higher or similar quality compared to a baseline model in preliminary user studies.


IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages

arXiv.org Artificial Intelligence

Despite the considerable advancements in English LLMs, the progress in building comparable models for other languages has been hindered due to the scarcity of tailored resources. Our work aims to bridge this divide by introducing an expansive suite of resources specifically designed for the development of Indic LLMs, covering 22 languages, containing a total of 251B tokens and 74.8M instruction-response pairs. Recognizing the importance of both data quality and quantity, our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data. We build a clean, open-source pipeline for curating pre-training data from diverse sources, including websites, PDFs, and videos, incorporating best practices for crawling, cleaning, flagging, and deduplication. For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models to create conversations grounded in articles from Indian Wikipedia and Wikihow. Additionally, we address toxicity alignment by generating toxic prompts for multiple scenarios and then generate non-toxic responses by feeding these toxic prompts to an aligned LLaMa2 model. We hope that the datasets, tools, and resources released as a part of this work will not only propel the research and development of Indic LLMs but also establish an open-source blueprint for extending such efforts to other languages. The data and other artifacts created as part of this work are released with permissive licenses.