Communications: Instructional Materials
MITHOS: Interactive Mixed Reality Training to Support Professional Socio-Emotional Interactions at Schools
Chehayeb, Lara, Bhuvaneshwara, Chirag, Anglet, Manuel, Hilpert, Bernhard, Meyer, Ann-Kristin, Tsovaltzi, Dimitra, Gebhard, Patrick, Biermann, Antje, Auchtor, Sinah, Lauinger, Nils, Knopf, Julia, Kaiser, Andreas, Kersting, Fabian, Mehlmann, Gregor, Lingenfelser, Florian, Andrรฉ, Elisabeth
Teachers in challenging conflict situations often experience shame and self-blame, which relate to the feeling of incompetence but may externalise as anger. Sensing mixed signals fails the contingency rule for developing affect regulation and may result in confusion for students about their own emotions and hinder their emotion regulation. Therefore, being able to constructively regulate emotions not only benefits individual experience of emotions but also fosters effective interpersonal emotion regulation and influences how a situation is managed. MITHOS is a system aimed at training teachers' conflict resolution skills through realistic situative learning opportunities during classroom conflicts. In four stages, MITHOS supports teachers' socio-emotional self-awareness, perspective-taking and positive regard. It provides: a) a safe virtual environment to train free social interaction and receive natural social feedback from reciprocal student-agent reactions, b) spatial situational perspective taking through an avatar, c) individual virtual reflection guidance on emotional experiences through co-regulation processes, and d) expert feedback on professional behavioural strategies. This chapter presents the four stages and their implementation in a semi-automatic Wizard-of-Oz (WoZ) System. The WoZ system affords collecting data that are used for developing the fully automated hybrid (machine learning and model-based) system, and to validate the underlying psychological and conflict resolution models. We present results validating the approach in terms of scenario realism, as well as a systematic testing of the effects of external avatar similarity on antecedents of self-awareness with behavior similarity. The chapter contributes to a common methodology of conducting interdisciplinary research for human-centered and generalisable XR and presents a system designed to support it.
HitPaw FotorPea: Effortlessly Enhance Blurry Photos
No-one likes blurry images, whether they are found in personal or professional situations. If a photo lacks sharpness, don't expect anyone to want to play through your slideshows. So, is it possible to enhance a blurry photo? With HitPaw FotorPea, which uses an AI-powered algorithm to automate editing, eliminating the blur and generally sprucing up your images is effortless. Read our guide to learn how to fix blurry photos with HitPaw FotorPea.
Automated essay scoring in Arabic: a dataset and analysis of a BERT-based system
Ghazawi, Rayed, Simpson, Edwin
Automated Essay Scoring (AES) holds significant promise in the field of education, helping educators to mark larger volumes of essays and provide timely feedback. However, Arabic AES research has been limited by the lack of publicly available essay data. This study introduces AR-AES, an Arabic AES benchmark dataset comprising 2046 undergraduate essays, including gender information, scores, and transparent rubric-based evaluation guidelines, providing comprehensive insights into the scoring process. These essays come from four diverse courses, covering both traditional and online exams. Additionally, we pioneer the use of AraBERT for AES, exploring its performance on different question types. We find encouraging results, particularly for Environmental Chemistry and source-dependent essay questions. For the first time, we examine the scale of errors made by a BERT-based AES system, observing that 96.15 percent of the errors are within one point of the first human marker's prediction, on a scale of one to five, with 79.49 percent of predictions matching exactly. In contrast, additional human markers did not exceed 30 percent exact matches with the first marker, with 62.9 percent within one mark. These findings highlight the subjectivity inherent in essay grading, and underscore the potential for current AES technology to assist human markers to grade consistently across large classes.
The Human Factor in AI Red Teaming: Perspectives from Social and Collaborative Computing
Zhang, Alice Qian, Shaw, Ryland, Anthis, Jacy Reese, Milton, Ashlee, Tseng, Emily, Suh, Jina, Ahmad, Lama, Kumar, Ram Shankar Siva, Posada, Julian, Shestakofsky, Benjamin, Roberts, Sarah T., Gray, Mary L.
Rapid progress in general-purpose AI has sparked significant interest in "red teaming," a practice of adversarial testing originating in military and cybersecurity applications. AI red teaming raises many questions about the human factor, such as how red teamers are selected, biases and blindspots in how tests are conducted, and harmful content's psychological effects on red teamers. A growing body of HCI and CSCW literature examines related practices-including data labeling, content moderation, and algorithmic auditing. However, few, if any, have investigated red teaming itself. This workshop seeks to consider the conceptual and empirical challenges associated with this practice, often rendered opaque by non-disclosure agreements. Future studies may explore topics ranging from fairness to mental health and other areas of potential harm. We aim to facilitate a community of researchers and practitioners who can begin to meet these challenges with creativity, innovation, and thoughtful reflection.
Ten Years of Teaching Empirical Software Engineering in the context of Energy-efficient Software
Malavolta, Ivano, Stoico, Vincenzo, Lago, Patricia
In this chapter we share our experience in running ten editions of the Green Lab course at the Vrije Universiteit Amsterdam, the Netherlands. The course is given in the Software Engineering and Green IT track of the Computer Science Master program of the VU. The course takes place every year over a 2-month period and teaches Computer Science students the fundamentals of Empirical Software Engineering in the context of energy-efficient software. The peculiarity of the course is its research orientation: at the beginning of the course the instructor presents a catalog of scientifically relevant goals, and each team of students signs up for one of them and works together for 2 months on their own experiment for achieving the goal. Each team goes over the classic steps of an empirical study, starting from a precise formulation of the goal and research questions to context definition, selection of experimental subjects and objects, definition of experimental variables, experiment execution, data analysis, and reporting. Over the years, the course became well-known within the Software Engineering community since it led to several scientific studies that have been published at various scientific conferences and journals. Also, students execute their experiments using \textit{open-source tools}, which are developed and maintained by researchers and other students within the program, thus creating a virtuous community of learners where students exchange ideas, help each other, and learn how to collaboratively contribute to open-source projects in a safe environment.
Efficient Materials Informatics between Rockets and Electrons
The true power of computational research typically can lay in either what it accomplishes or what it enables others to accomplish. In this work, both avenues are simultaneously embraced across several distinct efforts existing at three general scales of abstractions of what a material is - atomistic, physical, and design. At each, an efficient materials informatics infrastructure is being built from the ground up based on (1) the fundamental understanding of the underlying prior knowledge, including the data, (2) deployment routes that take advantage of it, and (3) pathways to extend it in an autonomous or semi-autonomous fashion, while heavily relying on artificial intelligence (AI) to guide well-established DFT-based ab initio and CALPHAD-based thermodynamic methods. The resulting multi-level discovery infrastructure is highly generalizable as it focuses on encoding problems to solve them easily rather than looking for an existing solution. To showcase it, this dissertation discusses the design of multi-alloy functionally graded materials (FGMs) incorporating ultra-high temperature refractory high entropy alloys (RHEAs) towards gas turbine and jet engine efficiency increase reducing CO2 emissions, as well as hypersonic vehicles. It leverages a new graph representation of underlying mathematical space using a newly developed algorithm based on combinatorics, not subject to many problems troubling the community. Underneath, property models and phase relations are learned from optimized samplings of the largest and highest quality dataset of HEA in the world, called ULTERA. At the atomistic level, a data ecosystem optimized for machine learning (ML) from over 4.5 million relaxed structures, called MPDD, is used to inform experimental observations and improve thermodynamic models by providing stability data enabled by a new efficient featurization framework.
Science-Informed Deep Learning (ScIDL) With Applications to Wireless Communications
Termehchi, Atefeh, Hossain, Ekram, Woungang, Isaac
Given the extensive and growing capabilities offered by deep learning (DL), more researchers are turning to DL to address complex challenges in next-generation (xG) communications. However, despite its progress, DL also reveals several limitations that are becoming increasingly evident. One significant issue is its lack of interpretability, which is especially critical for safety-sensitive applications. Another significant consideration is that DL may not comply with the constraints set by physics laws or given security standards, which are essential for reliable DL. Additionally, DL models often struggle outside their training data distributions, which is known as poor generalization. Moreover, there is a scarcity of theoretical guidance on designing DL algorithms. These challenges have prompted the emergence of a burgeoning field known as science-informed DL (ScIDL). ScIDL aims to integrate existing scientific knowledge with DL techniques to develop more powerful algorithms. The core objective of this article is to provide a brief tutorial on ScIDL that illustrates its building blocks and distinguishes it from conventional DL. Furthermore, we discuss both recent applications of ScIDL and potential future research directions in the field of wireless communications.
The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning
Cui, Shaobo, Jin, Zhijing, Schรถlkopf, Bernhard, Faltings, Boi
Understanding commonsense causality is a unique mark of intelligence for humans. It helps people understand the principles of the real world better and benefits the decision-making process related to causation. For instance, commonsense causality is crucial in judging whether a defendant's action causes the plaintiff's loss in determining legal liability. Despite its significance, a systematic exploration of this topic is notably lacking. Our comprehensive survey bridges this gap by focusing on taxonomies, benchmarks, acquisition methods, qualitative reasoning, and quantitative measurements in commonsense causality, synthesizing insights from over 200 representative articles. Our work aims to provide a systematic overview, update scholars on recent advancements, provide a pragmatic guide for beginners, and highlight promising future research directions in this vital field.
Facebook, Instagram are using your data to train AI: Learn how to protect it
Kurt "Cyberguy" Knutsson talks about how to protect your social media posts; a toddler getting trapped in a Tesla after the battery died. Meta may have paused its plans to train artificial intelligence models for the lucky ones living in Europe, where laws protect people using Facebook and Instagram better than Americans. Here in the good ole USA, both Facebook and Instagram have already been combing through public posts from U.S. accounts to train and improve its AI capabilities, including its chatbot, since last year. The proposed privacy policy update for European Union and U.K. users, originally scheduled for June 26, would have allowed Meta to use publicly shared content for AI training. However, users and regulatory agencies opposed this plan, leading to its indefinite postponement in those regions.
Data-driven Modeling in Metrology -- A Short Introduction, Current Developments and Future Perspectives
Schneider, Linda-Sophie, Krauss, Patrick, Schiering, Nadine, Syben, Christopher, Schielein, Richard, Maier, Andreas
Abstract: Mathematical models are vital to the field of metrology, playing a key role in the derivation of measurement results and the calculation of uncertainties from measurement data, informed by an understanding of the measurement process. These models generally represent the correlation between the quantity being measured and all other pertinent quantities. Such relationships are used to construct measurement systems that can interpret measurement data to generate conclusions and predictions about the measurement system itself. Classic models are typically analytical, built on fundamental physical principles. However, the rise of digital technology, expansive sensor networks, and high-performance computing hardware have led to a growing shift towards data-driven methodologies. This trend is especially prominent when dealing with large, intricate networked sensor systems in situations where there is limited expert understanding of the frequently changing real-world contexts. Here, we demonstrate the variety of opportunities that data-driven modeling presents, and how they have been already implemented in various real-world applications.