Goto

Collaborating Authors

 Communications: Instructional Materials


Learning Distribution Grid Topologies: A Tutorial

arXiv.org Artificial Intelligence

Unveiling feeder topologies from data is of paramount importance to advance situational awareness and proper utilization of smart resources in power distribution grids. This tutorial summarizes, contrasts, and establishes useful links between recent works on topology identification and detection schemes that have been proposed for power distribution grids. The primary focus is to highlight methods that overcome the limited availability of measurement devices in distribution grids, while enhancing topology estimates using conservation laws of power-flow physics and structural properties of feeders. Grid data from phasor measurement units or smart meters can be collected either passively in the traditional way, or actively, upon actuating grid resources and measuring the feeder's voltage response. Analytical claims on feeder identifiability and detectability are reviewed under disparate meter placement scenarios. Such topology learning claims can be attained exactly or approximately so via algorithmic solutions with various levels of computational complexity, ranging from least-squares fits to convex optimization problems, and from polynomial-time searches over graphs to mixed-integer programs. Although the emphasis is on radial single-phase feeders, extensions to meshed and/or multiphase circuits are sometimes possible and discussed. This tutorial aspires to provide researchers and engineers with knowledge of the current state-of-the-art in tractable distribution grid learning and insights into future directions of work.



This Podcast Is Not Hosted By AI Voice Clones. We Swear

WIRED

Artificial intelligence continues to seep into every aspect of our lives: search results, chatbots, images on social media, viral videos, documentaries about dead celebrities. A new class of emerging AI-powered services can take audio clips from voice recordings and build models off them. Anything you type into a computer can be spit out as an impression of that person's voice. Proponents of AI voice cloning see these tools as a way to make life a little easier for content creators. The robovoices can be used to fix mistakes, read ads, or perform other mundane duties.


Consciousness And Light

#artificialintelligence

Consciousness And Light Are Explored. The Inter Mind Bridges The Gap Between The Physical Mind And The Conscious Mind.


Consciousness And Light

#artificialintelligence

Consciousness And Light Are Explored. The Inter Mind Bridges The Gap Between The Physical Mind And The Conscious Mind.


Perspectives on AI Architectures and Co-design for Earth System Predictability

arXiv.org Artificial Intelligence

Recently, the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER), and Advanced Scientific Computing Research (ASCR) programs organized and held the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop series. From this workshop, a critical conclusion that the DOE BER and ASCR community came to is the requirement to develop a new paradigm for Earth system predictability focused on enabling artificial intelligence (AI) across the field, lab, modeling, and analysis activities, called ModEx. The BER's `Model-Experimentation', ModEx, is an iterative approach that enables process models to generate hypotheses. The developed hypotheses inform field and laboratory efforts to collect measurement and observation data, which are subsequently used to parameterize, drive, and test model (e.g., process-based) predictions. A total of 17 technical sessions were held in this AI4ESP workshop series. This paper discusses the topic of the `AI Architectures and Co-design' session and associated outcomes. The AI Architectures and Co-design session included two invited talks, two plenary discussion panels, and three breakout rooms that covered specific topics, including: (1) DOE HPC Systems, (2) Cloud HPC Systems, and (3) Edge computing and Internet of Things (IoT). We also provide forward-looking ideas and perspectives on potential research in this co-design area that can be achieved by synergies with the other 16 session topics. These ideas include topics such as: (1) reimagining co-design, (2) data acquisition to distribution, (3) heterogeneous HPC solutions for integration of AI/ML and other data analytics like uncertainty quantification with earth system modeling and simulation, and (4) AI-enabled sensor integration into earth system measurements and observations. Such perspectives are a distinguishing aspect of this paper.


Consciousness And Light

#artificialintelligence

Consciousness And Light Are Explored. The Inter Mind Bridges The Gap Between The Physical Mind And The Conscious Mind.


Consciousness And Light

#artificialintelligence

Consciousness And Light Are Explored. The Inter Mind Bridges The Gap Between The Physical Mind And The Conscious Mind.


Deep Generative Model and Its Applications in Efficient Wireless Network Management: A Tutorial and Case Study

arXiv.org Artificial Intelligence

With the phenomenal success of diffusion models and ChatGPT, deep generation models (DGMs) have been experiencing explosive growth from 2022. Not limited to content generation, DGMs are also widely adopted in Internet of Things, Metaverse, and digital twin, due to their outstanding ability to represent complex patterns and generate plausible samples. In this article, we explore the applications of DGMs in a crucial task, i.e., improving the efficiency of wireless network management. Specifically, we firstly overview the generative AI, as well as three representative DGMs. Then, a DGM-empowered framework for wireless network management is proposed, in which we elaborate the issues of the conventional network management approaches, why DGMs can address them efficiently, and the step-by-step workflow for applying DGMs in managing wireless networks. Moreover, we conduct a case study on network economics, using the state-of-the-art DGM model, i.e., diffusion model, to generate effective contracts for incentivizing the mobile AI-Generated Content (AIGC) services. Last but not least, we discuss important open directions for the further research.


Fast inference of latent space dynamics in huge relational event networks

arXiv.org Artificial Intelligence

Relational events are a type of social interactions, that sometimes are referred to as dynamic networks. Its dynamics typically depends on emerging patterns, so-called endogenous variables, or external forces, referred to as exogenous variables. Comprehensive information on the actors in the network, especially for huge networks, is rare, however. A latent space approach in network analysis has been a popular way to account for unmeasured covariates that are driving network configurations. Bayesian and EM-type algorithms have been proposed for inferring the latent space, but both the sheer size many social network applications as well as the dynamic nature of the process, and therefore the latent space, make computations prohibitively expensive. In this work we propose a likelihood-based algorithm that can deal with huge relational event networks. We propose a hierarchical strategy for inferring network community dynamics embedded into an interpretable latent space. Node dynamics are described by smooth spline processes. To make the framework feasible for large networks we borrow from machine learning optimization methodology. Model-based clustering is carried out via a convex clustering penalization, encouraging shared trajectories for ease of interpretation. We propose a model-based approach for separating macro-microstructures and perform a hierarchical analysis within successive hierarchies. The method can fit millions of nodes on a public Colab GPU in a few minutes. The code and a tutorial are available in a Github repository.