Natural Language
An engine not a camera: Measuring performative power of online search ELLIS Institute Tรผbingen
The power of digital platforms is at the center of major ongoing policy and regulatory efforts. To advance existing debates, we designed and executed an experiment to measure the performative power of online search providers. Instantiated in our setting, performative power quantifies the ability of a search engine to steer web traffic by rearranging results. To operationalize this definition we developed a browser extension that performs unassuming randomized experiments in the background. These randomized experiments emulate updates to the search algorithm and identify the causal effect of different content arrangements on clicks. Analyzing tens of thousands of clicks, we discuss what our robust quantitative findings say about the power of online search engines, using the Google Shopping antitrust investigation as a case study. More broadly, we envision our work to serve as a blueprint for how the recent definition of performative power can help integrate quantitative insights from online experiments with future investigations into the economic power of digital platforms.
OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction Yuntao Chen
In this paper, we propose OpenSatMap, a fine-grained, high-resolution satellite dataset for large-scale map construction. Map construction is one of the foundations of the transportation industry, such as navigation and autonomous driving. Extracting road structures from satellite images is an efficient way to construct large-scale maps. However, existing satellite datasets provide only coarse semantic-level labels with a relatively low resolution (up to level 19), impeding the advancement of this field. In contrast, the proposed OpenSatMap (1) has fine-grained instance-level annotations; (2) consists of high-resolution images (level 20); (3) is currently the largest one of its kind; (4) collects data with high diversity. Moreover, OpenSatMap covers and aligns with the popular nuScenes dataset and Argoverse 2 dataset to potentially advance autonomous driving technologies. By publishing and maintaining the dataset, we provide a high-quality benchmark for satellite-based map construction and downstream tasks like autonomous driving.
EGODE: An Event-attended Graph ODE Framework for Modeling Rigid Dynamics
This paper studies the problem of rigid dynamics modeling, which has a wide range of applications in robotics, graphics, and mechanical design. The problem is partly solved by graph neural network (GNN) simulators. However, these approaches cannot effectively handle the relationship between intrinsic continuity and instantaneous changes in rigid dynamics.
Efficient LLM Scheduling by Learning to Rank
In Large Language Model (LLM) inference, the output length of an LLM request is typically regarded as not known a priori. Consequently, most LLM serving systems employ a simple First-come-first-serve (FCFS) scheduling strategy, leading to Head-Of-Line (HOL) blocking and reduced throughput and service quality. In this paper, we reexamine this assumption - we show that, although predicting the exact generation length of each request is infeasible, it is possible to predict the relative ranks of output lengths in a batch of requests, using learning to rank. The ranking information offers valuable guidance for scheduling requests. Building on this insight, we develop a novel scheduler for LLM inference and serving that can approximate the shortest-job-first (SJF) schedule better than existing approaches. We integrate this scheduler with the state-of-the-art LLM serving system and show significant performance improvement in several important applications: 2.8x lower latency in chatbot serving and 6.5x higher throughput in synthetic data generation.
OnlineTAS: An Online Baseline for Temporal Action Segmentation Qing Zhong 1,2 Guodong Ding 2 Angela Yao University of Adelaide
Temporal context plays a significant role in temporal action segmentation. In an offline setting, the context is typically captured by the segmentation network after observing the entire sequence. However, capturing and using such context information in an online setting remains an under-explored problem. This work presents the an online framework for temporal action segmentation. At the core of the framework is an adaptive memory designed to accommodate dynamic changes in context over time, alongside a feature augmentation module that enhances the frames with the memory. In addition, we propose a post-processing approach to mitigate the severe over-segmentation in the online setting. On three common segmentation benchmarks, our approach achieves state-of-the-art performance.
Aligning Audio-Visual Joint Representations with an Agentic Workflow
Visual content and accompanied audio signals naturally formulate a joint representation to improve audio-visual (AV) related applications. While studies develop various AV representation learning frameworks, the importance of AV data alignment is usually undermined for achieving high-quality representation. We observe that an audio signal may contain background noise interference. Also, nonsynchronization may appear between audio and video streams.
Black-Box Forgetting
Large-scale pre-trained models (PTMs) provide remarkable zero-shot classification capability covering a wide variety of object classes. However, practical applications do not always require the classification of all kinds of objects, and leaving the model capable of recognizing unnecessary classes not only degrades overall accuracy but also leads to operational disadvantages. To mitigate this issue, we explore the selective forgetting problem for PTMs, where the task is to make the model unable to recognize only the specified classes while maintaining accuracy for the rest. All the existing methods assume "white-box" settings, where model information such as architectures, parameters, and gradients is available for training. However, PTMs are often "black-box," where information on such models is unavailable for commercial reasons or social responsibilities. In this paper, we address a novel problem of selective forgetting for black-box models, named Black-Box Forgetting, and propose an approach to the problem. Given that information on the model is unavailable, we optimize the input prompt to decrease the accuracy of specified classes through derivative-free optimization. To avoid difficult high-dimensional optimization while ensuring high forgetting performance, we propose Latent Context Sharing, which introduces common low-dimensional latent components among multiple tokens for the prompt. Experiments on four standard benchmark datasets demonstrate the superiority of our method with reasonable baselines.