Machine Learning
AI in the News
In reflect the overall tenor of the article; (3) although robotics, speech recognition, search, etc. - In April, Business Communication online and without charge, few things that helps engineers create better jet Company (BCC) will release a good last forever; and (4) the AI in the News engines. One variety, called a neural September 29, 2003 (www.koreaherald.co. "Will the day really come when'intelligent' Brokers Will Spend Big on Anti-Money detecting credit-card fraud. Since 1992, robots take over mundane household Laundering. Wall Street & neural nets have slashed such incidents chores and give people more leisure Technology. There is no definition yet of the andtech.com). But according to will spend almost $700 million in the small credit unions are required to use the the preliminary definition by the International next three years on antimoney-laundering software in order to qualify for debit-card Federation of Robotics, an industry technologies, according to a recent report insurance from Credit Union National Association."
Learning Qualitative Models
In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the QUIN program that looks for qualitative patterns in numeric data and outputs the results of learning as "qualitative trees." We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.
Model-Based Programming of Fault-Aware Systems
Williams, Brian C., Ingham, Michel D., Chung, Seung, Elliott, Paul, Hofbaur, Michael, Sullivan, Gregory T.
A wide range of sensor-rich, networked embedded systems are being created that must operate robustly for years in the face of novel failures by managing complex autonomic processes. These systems are being composed, for example, into vast networks of space, air, ground, and underwater vehicles. Our objective is to revolutionize the way in which we control these new artifacts by creating reactive model-based programming languages that enable everyday systems to reason intelligently and enable machines to explore other worlds. A model-based program is state and fault aware; it elevates the programming task to specifying intended state evolutions of a system. The program's executive automatically coordinates system interactions to achieve these states, entertaining known and potential failures, using models of its constituents and environment. At the executive's core is a method, called CONFLICT-DIRECTED A*, which quickly prunes promising but infeasible solutions, using a form of one-shot learning. This approach has been demonstrated on a range of systems, including the National Aeronautics and Space Administration's Deep Space One probe. Model-based programming is being generalized to hybrid discrete-continuous systems and the coordination of networks of robotic vehicles.
Accelerating Reinforcement Learning through Implicit Imitation
Imitation can be viewed as a means of enhancing learning in multiagent environments. It augments an agent's ability to learn useful behaviors by making intelligent use of the knowledge implicit in behaviors demonstrated by cooperative teachers or other more experienced agents. We propose and study a formal model of implicit imitation that can accelerate reinforcement learning dramatically in certain cases. Roughly, by observing a mentor, a reinforcement-learning agent can extract information about its own capabilities in, and the relative value of, unvisited parts of the state space. We study two specific instantiations of this model, one in which the learning agent and the mentor have identical abilities, and one designed to deal with agents and mentors with different action sets. We illustrate the benefits of implicit imitation by integrating it with prioritized sweeping, and demonstrating improved performance and convergence through observation of single and multiple mentors. Though we make some stringent assumptions regarding observability and possible interactions, we briefly comment on extensions of the model that relax these restricitions.
The 3rd International Planning Competition: Results and Analysis
This paper reports the outcome of the third in the series of biennial international planning competitions, held in association with the International Conference on AI Planning and Scheduling (AIPS) in 2002. In addition to describing the domains, the planners and the objectives of the competition, the paper includes analysis of the results. The results are analysed from several perspectives, in order to address the questions of comparative performance between planners, comparative difficulty of domains, the degree of agreement between planners about the relative difficulty of individual problem instances and the question of how well planners scale relative to one another over increasingly difficult problems. The paper addresses these questions through statistical analysis of the raw results of the competition, in order to determine which results can be considered to be adequately supported by the data. The paper concludes with a discussion of some challenges for the future of the competition series.
Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction
For large, real-world inductive learning problems, the number of training examples often must be limited due to the costs associated with procuring, preparing, and storing the training examples and/or the computational costs associated with learning from them. In such circumstances, one question of practical importance is: if only n training examples can be selected, in what proportion should the classes be represented? In this article we help to answer this question by analyzing, for a fixed training-set size, the relationship between the class distribution of the training data and the performance of classification trees induced from these data. We study twenty-six data sets and, for each, determine the best class distribution for learning. The naturally occurring class distribution is shown to generally perform well when classifier performance is evaluated using undifferentiated error rate (0/1 loss). However, when the area under the ROC curve is used to evaluate classifier performance, a balanced distribution is shown to perform well. Since neither of these choices for class distribution always generates the best-performing classifier, we introduce a "budget-sensitive" progressive sampling algorithm for selecting training examples based on the class associated with each example. An empirical analysis of this algorithm shows that the class distribution of the resulting training set yields classifiers with good (nearly-optimal) classification performance.
Temporal Decision Trees: Model-based Diagnosis of Dynamic Systems On-Board
Console, L., Picardi, C., Theseider Duprรจ, D.
The automatic generation of decision trees based on off-line reasoning on models of a domain is a reasonable compromise between the advantages of using a model-based approach in technical domains and the constraints imposed by embedded applications. In this paper we extend the approach to deal with temporal information. We introduce a notion of temporal decision tree, which is designed to make use of relevant information as long as it is acquired, and we present an algorithm for compiling such trees from a model-based reasoning system.
Efficient Solution Algorithms for Factored MDPs
Guestrin, C., Koller, D., Parr, R., Venkataraman, S.
This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the representation size of structured MDPs, but the complexity of exact solution algorithms for such MDPs can grow exponentially in the representation size. In this paper, we present two approximate solution algorithms that exploit structure in factored MDPs. Both use an approximate value function represented as a linear combination of basis functions, where each basis function involves only a small subset of the domain variables. A key contribution of this paper is that it shows how the basic operations of both algorithms can be performed efficiently in closed form, by exploiting both additive and context-specific structure in a factored MDP. A central element of our algorithms is a novel linear program decomposition technique, analogous to variable elimination in Bayesian networks, which reduces an exponentially large LP to a provably equivalent, polynomial-sized one. One algorithm uses approximate linear programming, and the second approximate dynamic programming. Our dynamic programming algorithm is novel in that it uses an approximation based on max-norm, a technique that more directly minimizes the terms that appear in error bounds for approximate MDP algorithms. We provide experimental results on problems with over 10^40 states, demonstrating a promising indication of the scalability of our approach, and compare our algorithm to an existing state-of-the-art approach, showing, in some problems, exponential gains in computation time.
In Search of the Horowitz Factor
Widmer, Gerhard, Dixon, Simon, Goebl, Werner, Pampalk, Elias, Tobudic, Asmir
The article introduces the reader to a large interdisciplinary research project whose goal is to use AI to gain new insight into a complex artistic phenomenon. We study fundamental principles of expressive music performance by measuring performance aspects in large numbers of recordings by highly skilled musicians (concert pianists) and analyzing the data with state-of-the-art methods from areas such as machine learning, data mining, and data visualization. The article first introduces the general research questions that guide the project and then summarizes some of the most important results achieved to date, with an emphasis on the most recent and still rather speculative work. Our current results show that it is possible for machines to make novel and interesting discoveries even in a domain such as music and that even if we might never find the "Horowitz Factor," AI can give us completely new insights into complex artistic behavior.
In Search of the Horowitz Factor
Widmer, Gerhard, Dixon, Simon, Goebl, Werner, Pampalk, Elias, Tobudic, Asmir
The article introduces the reader to a large interdisciplinary research project whose goal is to use AI to gain new insight into a complex artistic phenomenon. We study fundamental principles of expressive music performance by measuring performance aspects in large numbers of recordings by highly skilled musicians (concert pianists) and analyzing the data with state-of-the-art methods from areas such as machine learning, data mining, and data visualization. The article first introduces the general research questions that guide the project and then summarizes some of the most important results achieved to date, with an emphasis on the most recent and still rather speculative work. A broad view of the discovery process is given, from data acquisition through data visualization to inductive model building and pattern discovery, and it turns out that AI plays an important role in all stages of such an ambitious enterprise. Our current results show that it is possible for machines to make novel and interesting discoveries even in a domain such as music and that even if we might never find the "Horowitz Factor," AI can give us completely new insights into complex artistic behavior.