Goto

Collaborating Authors

 Machine Learning


Generalization of Back propagation to Recurrent and Higher Order Neural Networks

Neural Information Processing Systems

Fernando J. Pineda Applied Physics Laboratory, Johns Hopkins University Johns Hopkins Rd., Laurel MD 20707 Abstract A general method for deriving backpropagation algorithms for networks with recurrent and higher order networks is introduced. The propagation of activation in these networks is determined by dissipative differential equations. The error signal is backpropagated by integrating an associated differential equation. The method is introduced by applying it to the recurrent generalization of the feedforward backpropagation network. The method is extended to the case of higher order networks and to a constrained dynamical system for training a content addressable memory. The essential feature of the adaptive algorithms is that adaptive equation has a simple outer product form.


Capacity for Patterns and Sequences in Kanerva's SDM as Compared to Other Associative Memory Models

Neural Information Processing Systems

ABSTRACT The information capacity of Kanerva's Sparse, Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and HopJreld-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns. INTRODUCTION Many different models of memory and thought have been proposed by scientists over the years. The learning rule considered here uses the outer-product of patterns of Is and -Is.


A Mean Field Theory of Layer IV of Visual Cortex and Its Application to Artificial Neural Networks

Neural Information Processing Systems

ABSTRACT A single cell theory for the development of selectivity and ocular dominance in visual cortex has been presented previously by Bienenstock, Cooper and Munrol. This has been extended to a network applicable to layer IV of visual cortex 2. In this paper we present a mean field approximation that captures in a fairly transparent manner the qualitative, and many of the quantitative, results of the network theory. Finally, we consider the application of this theory to artificial neural networks and show that a significant reduction in architectural complexity is possible. A SINGLE LAYER NETWORK AND THE MEAN FIELD APPROXIMATION We consider a single layer network of ideal neurons which receive signals from outside of the layer and from cells within the layer (Figure 1). The activity of the ith cell in the network is c' - m' d J d is a vector of afferent signals to the network. Each cell receives input from n fibers outside of the cortical network through the matrix of synapses mi' Intra-layer input to each cell is then transmitted through the matrix of cortico-cortical synapses L. Light circles are the LGN -cortical synapses.


Simulations Suggest Information Processing Roles for the Diverse Currents in Hippocampal Neurons

Neural Information Processing Systems

ABSTRACT A computer model of the hippocampal pyramidal cell (HPC) is described which integrates data from a variety of sources in order to develop a consistent description for this cell type. The model presently includes descriptions of eleven nonlinear somatic currents of the HPC, and the electrotonic structure of the neuron is modelled with a soma/short-cable approximation. Model simulations qualitatively or quantitatively reproduce a wide range of somatic electrical behavior i HPCs, and demonstrate possible roles for the various currents in information processing. There are several substrates for neuronal computation, including connectivity, synapses, morphometries of dendritic trees, linear parameters of cell membrane, as well as nonlinear, time-varying membrane conductances, also referred to as currents or channels. In the classical description of neuronal function, the contribution of membrane channels is constrained to that of generating the action potential, setting firing threshold, and establishing the relationship between (steady-state) stimulus intensity and firing frequency.


A Novel Net that Learns Sequential Decision Process

Neural Information Processing Systems

We propose a new scheme to construct neural networks to classify patterns. The new scheme has several novel features: 1. We focus attention on the important attributes of patterns in ranking order.


Towards an Organizing Principle for a Layered Perceptual Network

Neural Information Processing Systems

TOWARDS AN ORGANIZING PRINCIPLE FOR A LAYERED PERCEPTUAL NETWORK Ralph Linsker IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 Abstract An information-theoretic optimization principle is proposed for the development of each processing stage of a multilayered perceptual network. This principle of "maximum information preservation" states that the signal transformation that is to be realized at each stage is one that maximizes the information that the output signal values (from that stage) convey about the input signals values (to that stage), subject to certain constraints and in the presence of processing noise. The quantity being maximized is a Shannon information rate. I provide motivation for this principle and -- for some simple model cases -- derive some of its consequences, discuss an algorithmic implementation, and show how the principle may lead to biologically relevant neural architectural features such as topographic maps, map distortions, orientation selectivity, and extraction of spatial and temporal signal correlations. A possible connection between this information-theoretic principle and a principle of minimum entropy production in nonequilibrium thermodynamics is suggested. Introduction This paper describes some properties of a proposed information-theoretic organizing principle for the development of a layered perceptual network.


Programmable Synaptic Chip for Electronic Neural Networks

Neural Information Processing Systems

PROGRAMMABLE SYNAPTIC CHIP FOR ELECTRONIC NEURAL NETWORKS A. Moopenn, H. Langenbacher, A.P. Thakoor, and S.K. Khanna Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91009 ABSTRACT A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of "long channel" NMOSFET binary connection elements implemented in a 3-um bulk CMOS process. Since the neurons are kept offchip, the synaptic chip serves as a "cascadable" building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silcon area.


Bit-Serial Neural Networks

Neural Information Processing Systems

This arises from representation which gives rise to gentle degradation as faults appear. These functions are attractive to implementation in VLSI and WSI. For example, the natural be useful in silicon wafers with imperfect yield, where thefault - tolerance could is approximately proportional to the non-functioning siliconnetwork degradation area. To cast neural networks in engineering language, a neuron is a state machine that is either "on" or "off', which in general assumes intermediate states as it switches The synapses weighting the signals from asmoothly between these extrema.


PATTERN CLASS DEGENERACY IN AN UNRESTRICTED STORAGE DENSITY MEMORY

Neural Information Processing Systems

ABSTRACT The study of distributed memory systems has produced a number of models which work well in limited domains. However, until recently, the application of such systems to realworld problemshas been difficult because of storage limitations, and their inherent architectural (and for serial simulation, computational) complexity. Recent development of memories with unrestricted storage capacity and economical feedforward architectures has opened the way to the application of such systems to complex pattern recognition problems. However, such problems are sometimes underspecified by the features which describe the environment, and thus a significant portion of the pattern environment is often non-separable. We will review current work on high density memory systems and their network implementations.