Machine Learning
CoupAlign: Coupling Word-Pixel with Sentence-Mask Alignments for Referring Image Segmentation
Referring image segmentation aims at localizing all pixels of the visual objects described by a natural language sentence. Previous works learn to straightforwardly align the sentence embedding and pixel-level embedding for highlighting the referred objects, but ignore the semantic consistency of pixels within the same object, leading to incomplete masks and localization errors in predictions. To tackle this problem, we propose CoupAlign, a simple yet effective multi-level visual-semantic alignment method, to couple sentence-mask alignment with wordpixel alignment to enforce object mask constraint for achieving more accurate localization and segmentation. Specifically, the Word-Pixel Alignment (WPA) module performs early fusion of linguistic and pixel-level features in intermediate layers of the vision and language encoders. Based on the word-pixel aligned embedding, a set of mask proposals are generated to hypothesize possible objects. Then in the Sentence-Mask Alignment (SMA) module, the masks are weighted by the sentence embedding to localize the referred object, and finally projected back to aggregate the pixels for the target. To further enhance the learning of the two alignment modules, an auxiliary loss is designed to contrast the foreground and background pixels.
Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty
In image segmentation, there is often more than one plausible solution for a given input. In medical imaging, for example, experts will often disagree about the exact location of object boundaries. Estimating this inherent uncertainty and predicting multiple plausible hypotheses is of great interest in many applications, yet this ability is lacking in most current deep learning methods. In this paper, we introduce stochastic segmentation networks (SSNs), an efficient probabilistic method for modelling aleatoric uncertainty with any image segmentation network architecture. In contrast to approaches that produce pixel-wise estimates, SSNs model joint distributions over entire label maps and thus can generate multiple spatially coherent hypotheses for a single image. By using a low-rank multivariate normal distribution over the logit space to model the probability of the label map given the image, we obtain a spatially consistent probability distribution that can be efficiently computed by a neural network without any changes to the underlying architecture. We tested our method on the segmentation of real-world medical data, including lung nodules in 2D CT and brain tumours in 3D multimodal MRI scans. SSNs outperform state-of-the-art for modelling correlated uncertainty in ambiguous images while being much simpler, more flexible, and more efficient.
Truthful High Dimensional Sparse Linear Regression
We study the problem of fitting the high dimensional sparse linear regression model with sub-Gaussian covariates and responses, where the data are provided by strategic or self-interested agents (individuals) who prioritize their privacy of data disclosure. In contrast to the classical setting, our focus is on designing mechanisms that can effectively incentivize most agents to truthfully report their data while preserving the privacy of individual reports. Simultaneously, we seek an estimator which should be close to the underlying parameter. We attempt to solve the problem by deriving a novel private estimator that has a closed-form expression.
Learning Distributions on Manifolds with Free-Form Flows
We propose Manifold Free-Form Flows (M-FFF), a simple new generative model for data on manifolds. The existing approaches to learning a distribution on arbitrary manifolds are expensive at inference time, since sampling requires solving a differential equation. Our method overcomes this limitation by sampling in a single function evaluation. The key innovation is to optimize a neural network via maximum likelihood on the manifold, possible by adapting the free-form flow framework to Riemannian manifolds. M-FFF is straightforwardly adapted to any manifold with a known projection. It consistently matches or outperforms previous single-step methods specialized to specific manifolds. It is typically two orders of magnitude faster than multi-step methods based on diffusion or flow matching, achieving better likelihoods in several experiments. We provide our code at https://github.com/vislearn/FFF.
VAL: Evaluate Large Language Model as Critic Tian Lan 1
Critique ability, i.e., the capability of Large Language Models (LLMs) to identify and rectify flaws in responses, is crucial for their applications in self-improvement and scalable oversight. While numerous studies have been proposed to evaluate critique ability of LLMs, their comprehensiveness and reliability are still limited.
Back to the Continuous Attractor
Continuous attractors offer a unique class of solutions for storing continuousvalued variables in recurrent system states for indefinitely long time intervals. Unfortunately, continuous attractors suffer from severe structural instability in general--they are destroyed by most infinitesimal changes of the dynamical law that defines them. This fragility limits their utility especially in biological systems as their recurrent dynamics are subject to constant perturbations. We observe that the bifurcations from continuous attractors in theoretical neuroscience models display various structurally stable forms. Although their asymptotic behaviors to maintain memory are categorically distinct, their finite-time behaviors are similar.
A Proof of Theorem
The model structures we used in Sections 4.1, 4.2, 4.3 and 4.4 are listed in Table A. As mentioned in the main text, for all models, CNN layers are used as embeddings and fully connected layers are task-specific. The number of neurons on the last fully connected layer is determined by the number of classes in the classification. There is no activation at the final output layer and all other activations are Tanh. All examples in the original MNIST training set with with these four labels are used in pretraining. The finetuning task is to classify the rest six classes, and we subsample only 5000 examples to finetune.
95e62984b87e90645a5cf77037395959-AuthorFeedback.pdf
We thank all four reviewers for their great reviews. We provide our feedback for each reviewer as follows. Due to the difficulty of evaluation, we can only use small scale datasets (e.g. CIFAR) to generate figures like Figure 1 (a-c) in our paper to show the correctness. MNIST and CIFAR are standard datasets in influence function or data cleansing literature.
Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents Quentin Delfosse,1 Sebastian Sztwiertnia,1 Mark Rothermel 1 Wolfgang Stammer
Goal misalignment, reward sparsity and difficult credit assignment are only a few of the many issues that make it difficult for deep reinforcement learning (RL) agents to learn optimal policies. Unfortunately, the black-box nature of deep neural networks impedes the inclusion of domain experts for inspecting the model and revising suboptimal policies. To this end, we introduce Successive Concept Bottleneck Agents (SCoBots), that integrate consecutive concept bottleneck (CB) layers. In contrast to current CB models, SCoBots do not just represent concepts as properties of individual objects, but also as relations between objects which is crucial for many RL tasks.
FM-Delta: Lossless Compression for Storing Massive Fine-tuned Foundation Models 12 Qi Qi
Pre-trained foundation models, particularly large language models, have achieved remarkable success and led to massive fine-tuned variants. These models are commonly fine-tuned locally and then uploaded by users to cloud platforms such as HuggingFace for secure storage. However, the huge model number and their billion-level parameters impose heavy storage overhead for cloud with limited resources. Our empirical and theoretical analysis reveals that most fine-tuned models in cloud have a small difference (delta) from their pre-trained models. To this end, we propose a novel lossless compression scheme FM-Delta specifically for storing massive fine-tuned models in cloud.