Not enough data to create a plot.
Try a different view from the menu above.
Education
The best live Memorial Day mattress deals in 2025: Shop Nectar, Brooklyn Bedding, Purple, and more
Just a few weeks left in the school year, warmer temperatures, and weekend barbecues on the calendar mean we've made it out of winter's hibernation. But that doesn't mean sleep should get put on the backburner. Sleep is one of life's basic pillars, and it impacts our mood, health, brain function, and much more. If you've ever had a terrible month of sleep, you know how detrimental a sleep deficit can be on pretty much every aspect of waking hours. Instead of putting the milk in the cupboard on account of a sleepy brain, prioritize sleep this summer by snagging a luxurious new mattress while it's on sale.
Chicago paper publishes AI-generated 'summer reading list' with books that don't exist
Texas high school student Elliston Berry joins'Fox & Friends' to discuss the House's passage of a new bill that criminalizes the sharing of non-consensual intimate images, including content created with artificial intelligence. The Chicago Sun-Times admitted on Tuesday that it published an AI-generated list of books that don't exist for its summer reading list. On Sunday, the publication released a special 64-page section titled "Heat Index: Your Guide to the Best of Summer" which featured a list of 15 recommended books for summer. However, upon further look, it was found that 10 of the 15 books on the list were not real. One example included a book called "Nightshade Market" by Min Jin Lee, which was described as a "riveting tale set in Seoul's underground economy" and follows "three women whose paths intersect in an illegal night market" exploring "class, gender and the shadow economies beneath prosperous societies."
ColdGANs: Taming Language GANs with Cautious Sampling Strategies Thomas Scialom, Paul-Alexis Dray
Training regimes based on Maximum Likelihood Estimation (MLE) suffer from known limitations, often leading to poorly generated text sequences. At the root of these limitations is the mismatch between training and inference, i.e. the so-called exposure bias, exacerbated by considering only the reference texts as correct, while in practice several alternative formulations could be as good. Generative Adversarial Networks (GANs) can mitigate those limitations but the discrete nature of text has hindered their application to language generation: the approaches proposed so far, based on Reinforcement Learning, have been shown to underperform MLE. Departing from previous works, we analyze the exploration step in GANs applied to text generation, and show how classical sampling results in unstable training. We propose to consider alternative exploration strategies in a GAN framework that we name ColdGANs, where we force the sampling to be close to the distribution modes to get smoother learning dynamics. For the first time, to the best of our knowledge, the proposed language GANs compare favorably to MLE, and obtain improvements over the state-of-the-art on three generative tasks, namely unconditional text generation, question generation, and abstractive summarization.
Interview with Gillian Hadfield: Normative infrastructure for AI alignment
During the 33rd International Joint Conference on Artificial Intelligence (IJCAI), held in Jeju, I had the opportunity to meet with one of the keynote speakers, Gillian Hadfield. We spoke about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems. Transcript: Note: the transcript has been lightly edited for clarity. This is an interview with Professor Gillian Hadfield who was a keynote speaker at IJCAI 2024. She gave a very insightful talk about normative infrastructures and how they can guide our search for AI alignment. Kumar Kshitij Patel (KKP): Could you talk a bit about your background and career trajectory? I want our readers to understand how much interdisciplinary work you've done over the years. Gillian Hadfield (GH): I did a PhD in economics and a law degree, a JD, at Stanford, originally motivated by wanting to think about the big questions about the world. So I read John Rawls' theory of justice when I was an undergraduate, and those are the big questions: how do we organize the world and just institutions, but I was very interested in using more formal methods and social scientific approaches. That's why I decided to do that joint degree. So, this is in the 1980s, and in the early days of starting to use a lot of game theory. I studied information theory, a student of Canaro and Paul Milgram at the economics department at Stanford. I did work on contract theory, bargaining theory, but I was still very interested in going to law school, not to practice law, but to learn about legal institutions and how those work. I was a member of this emerging area of law and economics early in my career, which of course, was interdisciplinary, using economics to think about law and legal institutions.
Supplementary Material
We provide more details of training the teacher network in Section A, more experimental results on synthetic functions in Section B, and the hyperparameter settings for benchmark datasets in Section C. Here, we omit the iteration subscript t for simplicity. To solve Eq. (10), we obtain the hypergradient regarding to and backpropagate it to = {W 2 R As shown in Algorithm 1, we train the teacher network one step when each time it is called by an underperforming student model, where the step refers to one iteration on synthetic functions and one epoch of the validation set on benchmark datasets in the experiment. In Section 4.1, we have shown the experimental results of HPM on two population synthetic functions, i.e., the Branin and Hartmann6D functions. In the following, we will provide more details about synthetic functions and the implementation, as well as more results on the other two functions. We used the Branin and Hartmann6D functions in Section 4.1.
Feature-fortified Unrestricted Graph Alignment
The necessity to align two graphs, minimizing a structural distance metric, is prevalent in biology, chemistry, recommender systems, and social network analysis. Due to the problem's NP-hardness, prevailing graph alignment methods follow a modular and mediated approach, solving the problem restricted to the domain of intermediary graph representations or products like embeddings, spectra, and graph signals. Restricting the problem to this intermediate space may distort the original problem and are hence predisposed to miss high-quality solutions.
Learning-to-learn non-convex piecewise-Lipschitz functions
We analyze the meta-learning of the initialization and step-size of learning algorithms for piecewise-Lipschitz functions, a non-convex setting with applications to both machine learning and algorithms. Starting from recent regret bounds for the exponential forecaster on losses with dispersed discontinuities, we generalize them to be initialization-dependent and then use this result to propose a practical meta-learning procedure that learns both the initialization and the step-size of the algorithm from multiple online learning tasks. Asymptotically, we guarantee that the average regret across tasks scales with a natural notion of task-similarity that measures the amount of overlap between near-optimal regions of different tasks.
Variational Distillation of Diffusion Policies into Mixture of Experts Denis Blessing
This work introduces Variational Diffusion Distillation (VDD), a novel method that distills denoising diffusion policies into Mixtures of Experts (MoE) through variational inference. Diffusion Models are the current state-of-the-art in generative modeling due to their exceptional ability to accurately learn and represent complex, multi-modal distributions. This ability allows Diffusion Models to replicate the inherent diversity in human behavior, making them the preferred models in behavior learning such as Learning from Human Demonstrations (LfD). However, diffusion models come with some drawbacks, including the intractability of likelihoods and long inference times due to their iterative sampling process. The inference times, in particular, pose a significant challenge to real-time applications such as robot control. In contrast, MoEs effectively address the aforementioned issues while retaining the ability to represent complex distributions but are notoriously difficult to train.
Symbolic Distillation for Learned TCP Congestion Control
Recent advances in TCP congestion control (CC) have achieved tremendous success with deep reinforcement learning (RL) approaches, which use feedforward neural networks (NN) to learn complex environment conditions and make better decisions. However, such "black-box" policies lack interpretability and reliability, and often, they need to operate outside the traditional TCP datapath due to the use of complex NNs. This paper proposes a novel two-stage solution to achieve the best of both worlds: first to train a deep RL agent, then distill its (over-)parameterized NN policy into white-box, light-weight rules in the form of symbolic expressions that are much easier to understand and to implement in constrained environments. At the core of our proposal is a novel symbolic branching algorithm that enables the rule to be aware of the context in terms of various network conditions, eventually converting the NN policy into a symbolic tree. The distilled symbolic rules preserve and often improve performance over state-of-the-art NN policies while being faster and simpler than a standard neural network. We validate the performance of our distilled symbolic rules on both simulation and emulation environments.
One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL
While reinforcement learning algorithms can learn effective policies for complex tasks, these policies are often brittle to even minor task variations, especially when variations are not explicitly provided during training. One natural approach to this problem is to train agents with manually specified variation in the training task or environment. However, this may be infeasible in practical situations, either because making perturbations is not possible, or because it is unclear how to choose suitable perturbation strategies without sacrificing performance. The key insight of this work is that learning diverse behaviors for accomplishing a task can directly lead to behavior that generalizes to varying environments, without needing to perform explicit perturbations during training. By identifying multiple solutions for the task in a single environment during training, our approach can generalize to new situations by abandoning solutions that are no longer effective and adopting those that are. We theoretically characterize a robustness set of environments that arises from our algorithm and empirically find that our diversity-driven approach can extrapolate to various changes in the environment and task.