Research Report
Understanding the Gains from Repeated Self-Distillation
Self-Distillation is a special type of knowledge distillation where the student model has the same architecture as the teacher model. Despite using the same architecture and the same training data, self-distillation has been empirically observed to improve performance, especially when applied repeatedly. For such a process, there is a fundamental question of interest: How much gain is possible by applying multiple steps of self-distillation? To investigate this relative gain, we propose studying the simple but canonical task of linear regression. Our analysis shows that the excess risk achieved by multi-step self-distillation can significantly improve upon a single step of self-distillation, reducing the excess risk by a factor as large as d, where d is the input dimension.
On the Identifiability of Hybrid Deep Generative Models: Meta-Learning as a Solution
The interest in leveraging physics-based inductive bias in deep learning has resulted in recent development of hybrid deep generative models (hybrid-DGMs) that integrates known physics-based mathematical expressions in neural generative models. To identify these hybrid-DGMs requires inferring parameters of the physics-based component along with their neural component. The identifiability of these hybrid-DGMs, however, has not yet been theoretically probed or established. How does the existing theory of the un-identifiability of general DGMs apply to hybrid-DGMs? What may be an effective approach to consutrct a hybrid-DGM with theoretically-proven identifiability? This paper provides the first theoretical probe into the identifiability of hybrid-DGMs, and present meta-learning as a novel solution to construct identifiable hybrid-DGMs. On synthetic and real-data benchmarks, we provide strong empirical evidence for the un-identifiability of existing hybrid-DGMs using unconditional priors, and strong identifiability results of the presented meta-formulations of hybrid-DGMs.
Stability and Generalization of Asynchronous SGD: Sharper Bounds Beyond Lipschitz and Smoothness Xiaoge Deng Tao Sun Shengwei Li Dongsheng Li
Asynchronous stochastic gradient descent (ASGD) has evolved into an indispensable optimization algorithm for training modern large-scale distributed machine learning tasks. Therefore, it is imperative to explore the generalization performance of the ASGD algorithm. However, the existing results are either pessimistic and vacuous or restricted by strict assumptions that fail to reveal the intrinsic impact of asynchronous training on generalization. In this study, we establish sharper stability and generalization bounds for ASGD under much weaker assumptions. Firstly, this paper studies the on-average model stability of ASGD and provides a non-vacuous upper bound on the generalization error, without relying on the Lipschitz assumption. Furthermore, we investigate the excess generalization error of the ASGD algorithm, revealing the effects of asynchronous delay, model initialization, number of training samples and iterations on generalization performance. Secondly, for the first time, this study explores the generalization performance of ASGD in the non-smooth case. We replace smoothness with the much weaker Hรถlder continuous assumption and achieve similar generalization results as in the smooth case.
Limits of Transformer Language Models on Learning to Compose Algorithms
We analyze the capabilities of Transformer language models in learning compositional discrete tasks. To this end, we evaluate training LLaMA models and prompting GPT-4 and Gemini on four tasks demanding to learn a composition of several discrete sub-tasks. In particular, we measure how well these models can reuse primitives observable in the sub-tasks to learn the composition task. Our results indicate that compositional learning in state-of-the-art Transformer language models is highly sample inefficient: LLaMA requires more data samples than relearning all sub-tasks from scratch to learn the compositional task; in-context prompting with few samples is unreliable and fails at executing the sub-tasks or correcting the errors in multi-round code generation. Further, by leveraging complexity theory, we support these findings with a theoretical analysis focused on the sample inefficiency of gradient descent in memorizing feedforward models.
Make Continual Learning Stronger via C-Flat Ang Bian 1, Wei Li
How to balance the learning'sensitivity-stability' upon new task training and memory preserving is critical in CL to resolve catastrophic forgetting. Improving model generalization ability within each learning phase is one solution to help CL learning overcome the gap in the joint knowledge space. Zeroth-order loss landscape sharpness-aware minimization is a strong training regime improving model generalization in transfer learning compared with optimizer like SGD. It has also been introduced into CL to improve memory representation or learning efficiency. However, zeroth-order sharpness alone could favors sharper over flatter minima in certain scenarios, leading to a rather sensitive minima rather than a global optima. To further enhance learning stability, we propose a Continual Flatness (C-Flat) method featuring a flatter loss landscape tailored for CL. C-Flat could be easily called with only one line of code and is plug-and-play to any CL methods. A general framework of C-Flat applied to all CL categories and a thorough comparison with loss minima optimizer and flat minima based CL approaches is presented in this paper, showing that our method can boost CL performance in almost all cases. Code is available at https://github.com/WanNaa/C-Flat.
MVGamba: Unify 3D Content Generation as State Space Sequence Modeling
Recent 3D large reconstruction models (LRMs) can generate high-quality 3D content in sub-seconds by integrating multi-view diffusion models with scalable multi-view reconstructors. Current works further leverage 3D Gaussian Splatting as 3D representation for improved visual quality and rendering efficiency. However, we observe that existing Gaussian reconstruction models often suffer from multi-view inconsistency and blurred textures. We attribute this to the compromise of multi-view information propagation in favor of adopting powerful yet computationally intensive architectures (e.g., Transformers). To address this issue, we introduce MVGamba, a general and lightweight Gaussian reconstruction model featuring a multi-view Gaussian reconstructor based on the RNN-like State Space Model (SSM).
Text2CAD: Generating Sequential CAD Designs from Beginner-to-Expert Level Text Prompts Mohammad Sadil Khan
Prototyping complex computer-aided design (CAD) models in modern softwares can be very time-consuming. This is due to the lack of intelligent systems that can quickly generate simpler intermediate parts. We propose Text2CAD, the first AI framework for generating text-to-parametric CAD models using designerfriendly instructions for all skill levels. Furthermore, we introduce a data annotation pipeline for generating text prompts based on natural language instructions for the DeepCAD dataset using Mistral and LLaVA-NeXT. The dataset contains 170K models and 660K text annotations, from abstract CAD descriptions (e.g., generate two concentric cylinders) to detailed specifications (e.g., draw two circles with center (x, y) and radius r
Breaking Long-Tailed Learning Bottlenecks: A Controllable Paradigm with Hypernetwork-Generated Diverse Experts
Traditional long-tailed learning methods often perform poorly when dealing with inconsistencies between training and test data distributions, and they cannot flexibly adapt to different user preferences for trade-offs between head and tail classes. To address this issue, we propose a novel long-tailed learning paradigm that aims to tackle distribution shift in real-world scenarios and accommodate different user preferences for the trade-off between head and tail classes. We generate a set of diverse expert models via hypernetworks to cover all possible distribution scenarios, and optimize the model ensemble to adapt to any test distribution. Crucially, in any distribution scenario, we can flexibly output a dedicated model solution that matches the user's preference. Extensive experiments demonstrate that our method not only achieves higher performance ceilings but also effectively overcomes distribution shift while allowing controllable adjustments according to user preferences. We provide new insights and a paradigm for the long-tailed learning problem, greatly expanding its applicability in practical scenarios.
Text-space Graph Foundation Models: Comprehensive Benchmarks and New Insights
Given the ubiquity of graph data and its applications in diverse domains, building a Graph Foundation Model (GFM) that can work well across different graphs and tasks with a unified backbone has recently garnered significant interests. A major obstacle to achieving this goal stems from the fact that graphs from different domains often exhibit diverse node features. Inspired by multi-modal models that align different modalities with natural language, the text has recently been adopted to provide a unified feature space for diverse graphs. Despite the great potential of these text-space GFMs, current research in this field is hampered by two problems. First, the absence of a comprehensive benchmark with unified problem settings hinders a clear understanding of the comparative effectiveness and practical value of different text-space GFMs. Second, there is a lack of sufficient datasets to thoroughly explore the methods' full potential and verify their effectiveness across diverse settings. To address these issues, we conduct a comprehensive benchmark providing novel text-space datasets and comprehensive evaluation under unified problem settings. Empirical results provide new insights and inspire future research directions. Our code and data are publicly available from https://github.com/CurryTang/TSGFM.
Sharing Key Semantics in Transformer Makes Efficient Image Restoration
Image Restoration (IR), a classic low-level vision task, has witnessed significant advancements through deep models that effectively model global information. Notably, the emergence of Vision Transformers (ViTs) has further propelled these advancements. When computing, the self-attention mechanism, a cornerstone of ViTs, tends to encompass all global cues, even those from semantically unrelated objects or regions. This inclusivity introduces computational inefficiencies, particularly noticeable with high input resolution, as it requires processing irrelevant information, thereby impeding efficiency. Additionally, for IR, it is commonly noted that small segments of a degraded image, particularly those closely aligned semantically, provide particularly relevant information to aid in the restoration process, as they contribute essential contextual cues crucial for accurate reconstruction. To address these challenges, we propose boosting IR's performance by sharing the key semantics via Transformer for IR (i.e., SemanIR) in this paper.