Not enough data to create a plot.
Try a different view from the menu above.
Country
Autonomous Driving in Traffic: Boss and the Urban Challenge
Urmson, Chris (Carnegie Mellon University) | Baker, Chris (Carnegie Mellon University) | Dolan, John (Carnegie Mellon University) | Rybski, Paul (Carnegie Mellon University) | Salesky, Bryan (Carnegie Mellon University) | Whittaker, William (Carnegie Mellon University) | Ferguson, Dave (Two Sigma Investments) | Darms, Michael (Carnegie Mellon University)
The DARPA Urban Challenge was a competition to develop autonomous vehicles capable of safely, reliably and robustly driving in traffic. In this article we introduce Boss, the autonomous vehicle that won the challenge. Boss is complex artificially intelligent software system embodied in a 2007 Chevy Tahoe. To navigate safely, the vehicle builds a model of the world around it in real time. This model is used to generate safe routes and motion plans in both on roads and in unstructured zones. An essential part of Boss’ success stems from its ability to safely handle both abnormal situations and system glitches.
An AI Framework to Teach English as a Foreign Language: CSIEC
Jia, Jiyou (Peking University)
CSIEC (Computer Simulation in Educational Communication), is not only an intelligent web-based human-computer dialogue system with natural language for English instruction, but also a learning assessment system for learners and teachers. Its multiple functions—including grammar-based gap filling exercises, scenario show, free chatting and chatting on a given topic—can satisfy the various requirements for students with different backgrounds and learning abilities. After a brief explanation of the conception of our dialogue system, as well as a survey of related works, we will illustrate the system structure, and describe its pedagogical functions with the underlying AI techniques in detail such as NLP and rule-based reasoning. We will summarize the free Internet usage within a six month period and its integration into English classes in universities and middle schools. The evaluation findings about the class integration show that the chatting function has been improved and frequently utilized by the users, and the application of the CSIEC system on English instruction can motivate the learners to practice English and enhance their learning process. Finally, we will conclude with potential improvements.
Visualizing Topics with Multi-Word Expressions
Blei, David M., Lafferty, John D.
We describe a new method for visualizing topics, the distributions over terms that are automatically extracted from large text corpora using latent variable models. Our method finds significant $n$-grams related to a topic, which are then used to help understand and interpret the underlying distribution. Compared with the usual visualization, which simply lists the most probable topical terms, the multi-word expressions provide a better intuitive impression for what a topic is "about." Our approach is based on a language model of arbitrary length expressions, for which we develop a new methodology based on nested permutation tests to find significant phrases. We show that this method outperforms the more standard use of $\chi^2$ and likelihood ratio tests. We illustrate the topic presentations on corpora of scientific abstracts and news articles.
Open Problems in Universal Induction & Intelligence
Specialized intelligent systems can be found everywhere: finger print, handwriting, speech, and face recognition, spam filtering, chess and other game programs, robots, et al. This decade the first presumably complete mathematical theory of artificial intelligence based on universal induction-prediction-decision-action has been proposed. This information-theoretic approach solidifies the foundations of inductive inference and artificial intelligence. Getting the foundations right usually marks a significant progress and maturing of a field. The theory provides a gold standard and guidance for researchers working on intelligent algorithms. The roots of universal induction have been laid exactly half-a-century ago and the roots of universal intelligence exactly one decade ago. So it is timely to take stock of what has been achieved and what remains to be done. Since there are already good recent surveys, I describe the state-of-the-art only in passing and refer the reader to the literature. This article concentrates on the open problems in universal induction and its extension to universal intelligence.
Bayesian Agglomerative Clustering with Coalescents
Teh, Yee Whye, Daumé, Hal III, Roy, Daniel
We introduce a new Bayesian model for hierarchical clustering based on a prior over trees called Kingman's coalescent. We develop novel greedy and sequential Monte Carlo inferences which operate in a bottom-up agglomerative fashion. We show experimentally the superiority of our algorithms over others, and demonstrate our approach in document clustering and phylolinguistics.
The Self-Organization of Interaction Networks for Nature-Inspired Optimization
Whitacre, James M., Sarker, Ruhul A., Pham, Q. Tuan
Over the last decade, significant progress has been made in understanding complex biological systems, however there have been few attempts at incorporating this knowledge into nature inspired optimization algorithms. In this paper, we present a first attempt at incorporating some of the basic structural properties of complex biological systems which are believed to be necessary preconditions for system qualities such as robustness. In particular, we focus on two important conditions missing in Evolutionary Algorithm populations; a self-organized definition of locality and interaction epistasis. We demonstrate that these two features, when combined, provide algorithm behaviors not observed in the canonical Evolutionary Algorithm or in Evolutionary Algorithms with structured populations such as the Cellular Genetic Algorithm. The most noticeable change in algorithm behavior is an unprecedented capacity for sustainable coexistence of genetically distinct individuals within a single population. This capacity for sustained genetic diversity is not imposed on the population but instead emerges as a natural consequence of the dynamics of the system.
Strategic Positioning in Tactical Scenario Planning
Whitacre, James M., Abbass, Hussein A., Sarker, Ruhul, Bender, Axel, Baker, Stephen
Capability planning problems are pervasive throughout many areas of human interest with prominent examples found in defense and security. Planning provides a unique context for optimization that has not been explored in great detail and involves a number of interesting challenges which are distinct from traditional optimization research. Planning problems demand solutions that can satisfy a number of competing objectives on multiple scales related to robustness, adaptiveness, risk, etc. The scenario method is a key approach for planning. Scenarios can be defined for long-term as well as short-term plans. This paper introduces computational scenario-based planning problems and proposes ways to accommodate strategic positioning within the tactical planning domain. We demonstrate the methodology in a resource planning problem that is solved with a multi-objective evolutionary algorithm. Our discussion and results highlight the fact that scenario-based planning is naturally framed within a multi-objective setting. However, the conflicting objectives occur on different system levels rather than within a single system alone. This paper also contends that planning problems are of vital interest in many human endeavors and that Evolutionary Computation may be well positioned for this problem domain.
Computational Scenario-based Capability Planning
Abbass, Hussein, Bender, Axel, Dam, Helen, Baker, Stephen, Whitacre, James M, Sarker, Ruhul
Scenarios are pen-pictures of plausible futures, used for strategic planning. The aim of this investigation is to expand the horizon of scenario-based planning through computational models that are able to aid the analyst in the planning process. The investigation builds upon the advances of Information and Communication Technology (ICT) to create a novel, flexible and customizable computational capability-based planning methodology that is practical and theoretically sound. We will show how evolutionary computation, in particular evolutionary multi-objective optimization, can play a central role - both as an optimizer and as a source for innovation.
Evidence of coevolution in multi-objective evolutionary algorithms
This paper demonstrates that simple yet important characteristics of coevolution can occur in evolutionary algorithms when only a few conditions are met. We find that interaction-based fitness measurements such as fitness (linear) ranking allow for a form of coevolutionary dynamics that is observed when 1) changes are made in what solutions are able to interact during the ranking process and 2) evolution takes place in a multi-objective environment. This research contributes to the study of simulated evolution in a at least two ways. First, it establishes a broader relationship between coevolution and multi-objective optimization than has been previously considered in the literature. Second, it demonstrates that the preconditions for coevolutionary behavior are weaker than previously thought. In particular, our model indicates that direct cooperation or competition between species is not required for coevolution to take place. Moreover, our experiments provide evidence that environmental perturbations can drive coevolutionary processes; a conclusion that mirrors arguments put forth in dual phase evolution theory. In the discussion, we briefly consider how our results may shed light onto this and other recent theories of evolution.