Not enough data to create a plot.
Try a different view from the menu above.
Lombardy
Policy Optimization via Importance Sampling
Policy optimization is an effective reinforcement learning approach to solve continuous control tasks. Recent achievements have shown that alternating online and offline optimization is a successful choice for efficient trajectory reuse. However, deciding when to stop optimizing and collect new trajectories is non-trivial, as it requires to account for the variance of the objective function estimate. In this paper, we propose a novel, model-free, policy search algorithm, POIS, applicable in both action-based and parameter-based settings. We first derive a high-confidence bound for importance sampling estimation; then we define a surrogate objective function, which is optimized offline whenever a new batch of trajectories is collected. Finally, the algorithm is tested on a selection of continuous control tasks, with both linear and deep policies, and compared with state-of-the-art policy optimization methods.
Semantic Web and Creative AI -- A Technical Report from ISWS 2023
Ahmad, Raia Abu, Alharbi, Reham, Barile, Roberto, Bรถckling, Martin, Bolanos, Francisco, Bonfitto, Sara, Bruns, Oleksandra, Celino, Irene, Chudasama, Yashrajsinh, Critelli, Martin, d'Amato, Claudia, D'Ippolito, Giada, Dasoulas, Ioannis, De Giorgis, Stefano, De Leo, Vincenzo, Di Bonaventura, Chiara, Di Panfilo, Marco, Dobriy, Daniil, Domingue, John, Duan, Xuemin, Dumontier, Michel, Efeoglu, Sefika, Eschauzier, Ruben, Ginwa, Fakih, Ferranti, Nicolas, Graciotti, Arianna, Hanisch, Philipp, Hannah, George, Heidari, Golsa, Hogan, Aidan, Hussein, Hassan, Jouglar, Alexane, Kalo, Jan-Christoph, Kieffer, Manoรฉ, Klironomos, Antonis, Koch, Inรชs, Lajewska, Weronika, Lazzari, Nicolas, Lindekrans, Mikael, Lippolis, Anna Sofia, Llugiqi, Majlinda, Mancini, Eleonora, Marzi, Eleonora, Menotti, Laura, Flores, Daniela Milon, Nagowah, Soulakshmee, Neubert, Kerstin, Niazmand, Emetis, Norouzi, Ebrahim, Martinez, Beatriz Olarte, Oudshoorn, Anouk Michelle, Poltronieri, Andrea, Presutti, Valentina, Purohit, Disha, Raoufi, Ensiyeh, Ringwald, Celian, Rockstroh, Johanna, Rudolph, Sebastian, Sack, Harald, Saeed, Zafar, Saeedizade, Mohammad Javad, Sahbi, Aya, Santini, Cristian, Simic, Aleksandra, Sommer, Dennis, Sousa, Rita, Tan, Mary Ann, Tarikere, Vidyashree, Tietz, Tabea, Tirpitz, Liam, Tomasino, Arnaldo, van Harmelen, Frank, Vissoci, Joao, Woods, Caitlin, Zhang, Bohui, Zhang, Xinyue, Zheng, Heng
The International Semantic Web Research School (ISWS) is a week-long intensive program designed to immerse participants in the field. This document reports a collaborative effort performed by ten teams of students, each guided by a senior researcher as their mentor, attending ISWS 2023. Each team provided a different perspective to the topic of creative AI, substantiated by a set of research questions as the main subject of their investigation. The 2023 edition of ISWS focuses on the intersection of Semantic Web technologies and Creative AI. ISWS 2023 explored various intersections between Semantic Web technologies and creative AI. A key area of focus was the potential of LLMs as support tools for knowledge engineering. Participants also delved into the multifaceted applications of LLMs, including legal aspects of creative content production, humans in the loop, decentralised approaches to multimodal generative AI models, nanopublications and AI for personal scientific knowledge graphs, commonsense knowledge in automatic story and narrative completion, generative AI for art critique, prompt engineering, automatic music composition, commonsense prototyping and conceptual blending, and elicitation of tacit knowledge. As Large Language Models and semantic technologies continue to evolve, new exciting prospects are emerging: a future where the boundaries between creative expression and factual knowledge become increasingly permeable and porous, leading to a world of knowledge that is both informative and inspiring.
NLP-based assessment of prescription appropriateness from Italian referrals
Torri, Vittorio, Bottelli, Annamaria, Ercolanoni, Michele, Leoni, Olivia, Ieva, Francesca
Objective: This study proposes a Natural Language Processing pipeline to evaluate prescription appropriateness in Italian referrals, where reasons for prescriptions are recorded only as free text, complicating automated comparisons with guidelines. The pipeline aims to derive, for the first time, a comprehensive summary of the reasons behind these referrals and a quantification of their appropriateness. While demonstrated in a specific case study, the approach is designed to generalize to other types of examinations. Methods: Leveraging embeddings from a transformer-based model, the proposed approach clusters referral texts, maps clusters to labels, and aligns these labels with existing guidelines. We present a case study on a dataset of 496,971 referrals, consisting of all referrals for venous echocolordopplers of the lower limbs between 2019 and 2021 in the Lombardy Region. A sample of 1,000 referrals was manually annotated to validate the results. Results: The pipeline exhibited high performance for referrals' reasons (Prec=92.43%, Rec=83.28%) and excellent results for referrals' appropriateness (Prec=93.58%, Rec=91.52%) on the annotated subset. Analysis of the entire dataset identified clusters matching guideline-defined reasons - both appropriate and inappropriate - as well as clusters not addressed in the guidelines. Overall, 34.32% of referrals were marked as appropriate, 34.07% inappropriate, 14.37% likely inappropriate, and 17.24% could not be mapped to guidelines. Conclusions: The proposed pipeline effectively assessed prescription appropriateness across a large dataset, serving as a valuable tool for health authorities. Findings have informed the Lombardy Region's efforts to strengthen recommendations and reduce the burden of inappropriate referrals.
Interpretable and Efficient Data-driven Discovery and Control of Distributed Systems
Wolf, Florian, Botteghi, Nicolรฒ, Fasel, Urban, Manzoni, Andrea
Feedback control for complex physical systems is essential in many fields of Engineering and Applied Sciences, which are typically governed by Partial Differential Equations (PDEs). In these cases, the state of the systems is often challenging or even impossible to observe completely, the systems exhibit nonlinear dynamics, and require low-latency feedback control [BNK20]; [PK20]; [KJ20]. Consequently, effectively controlling these systems is a computationally intensive task. For instance, significant efforts have been devoted in the last decade to the investigation of optimal control problems governed by PDEs [Hin+08]; [MQS22]; however, classical feedback control strategies face limitations with such highly complex dynamical systems. For instance, (nonlinear) model predictive control (MPC) [GP17] has emerged as an effective and important control paradigm. MPC utilizes an internal model of the dynamics to create a feedback loop and provide optimal controls, resulting in a difficult trade-off between model accuracy and computational performance. Despite its impressive success in disciplines such as robotics [Wil+18] and controlling PDEs [Alt14], MPC struggles with real-time applicability in providing low-latency actuation, due to the need for solving complex optimization problems. In recent years, reinforcement learning (RL), particularly deep reinforcement learning (DRL) [SB18], an extension of RL relying on deep neural networks (DNN), has gained popularity as a powerful and real-time applicable control paradigm. Especially in the context of solving PDEs, DRL has demonstrated outstanding capabilities in controlling complex and high-dimensional dynamical systems at low latency [You+23]; [Pei+23]; [BF24]; [Vin24].
Optimal lower bounds for logistic log-likelihoods
Anceschi, Niccolรฒ, Rigon, Tommaso, Zanella, Giacomo, Durante, Daniele
The logit transform is arguably the most widely-employed link function beyond linear settings. This transformation routinely appears in regression models for binary data and provides, either explicitly or implicitly, a core building-block within state-of-the-art methodologies for both classification and regression. Its widespread use, combined with the lack of analytical solutions for the optimization of general losses involving the logit transform, still motivates active research in computational statistics. Among the directions explored, a central one has focused on the design of tangent lower bounds for logistic log-likelihoods that can be tractably optimized, while providing a tight approximation of these log-likelihoods. Although progress along these lines has led to the development of effective minorize-maximize (MM) algorithms for point estimation and coordinate ascent variational inference schemes for approximate Bayesian inference under several logit models, the overarching focus in the literature has been on tangent quadratic minorizers. In fact, it is still unclear whether tangent lower bounds sharper than quadratic ones can be derived without undermining the tractability of the resulting minorizer. This article addresses such a challenging question through the design and study of a novel piece-wise quadratic lower bound that uniformly improves any tangent quadratic minorizer, including the sharpest ones, while admitting a direct interpretation in terms of the classical generalized lasso problem. As illustrated in a ridge logistic regression, this unique connection facilitates more effective implementations than those provided by available piece-wise bounds, while improving the convergence speed of quadratic ones.
Policy Optimization via Importance Sampling Matteo Papini Politecnico di Milano, Milan, Italy
Policy optimization is an effective reinforcement learning approach to solve continuous control tasks. Recent achievements have shown that alternating online and offline optimization is a successful choice for efficient trajectory reuse. However, deciding when to stop optimizing and collect new trajectories is non-trivial, as it requires to account for the variance of the objective function estimate. In this paper, we propose a novel, model-free, policy search algorithm, POIS, applicable in both action-based and parameter-based settings. We first derive a high-confidence bound for importance sampling estimation; then we define a surrogate objective function, which is optimized offline whenever a new batch of trajectories is collected. Finally, the algorithm is tested on a selection of continuous control tasks, with both linear and deep policies, and compared with state-of-the-art policy optimization methods.
Tactical Game-theoretic Decision-making with Homotopy Class Constraints
Khayyat, Michael, Zanardi, Alessandro, Arrigoni, Stefano, Braghin, Francesco
We propose a tactical homotopy-aware decision-making framework for game-theoretic motion planning in urban environments. We model urban driving as a generalized Nash equilibrium problem and employ a mixed-integer approach to tame the combinatorial aspect of motion planning. More specifically, by utilizing homotopy classes, we partition the high-dimensional solution space into finite, well-defined subregions. Each subregion (homotopy) corresponds to a high-level tactical decision, such as the passing order between pairs of players. The proposed formulation allows to find global optimal Nash equilibria in a computationally tractable manner by solving a mixed-integer quadratic program. Each homotopy decision is represented by a binary variable that activates different sets of linear collision avoidance constraints. This extra homotopic constraint allows to find solutions in a more efficient way (on a roundabout scenario on average 5-times faster). We experimentally validate the proposed approach on scenarios taken from the rounD dataset. Simulation-based testing in receding horizon fashion demonstrates the capability of the framework in achieving globally optimal solutions while yielding a 78% average decrease in the computational time with respect to an implementation without the homotopic constraints.
Modeling and predicting students' engagement behaviors using mixture Markov models
Maqsood, R., Ceravolo, P., Romero, C., Ventura, S.
Students' engagements reflect their level of involvement in an ongoing learning process which can be estimated through their interactions with a computer-based learning or assessment system. A pre-requirement for stimulating student engagement lies in the capability to have an approximate representation model for comprehending students' varied (dis)engagement behaviors. In this paper, we utilized model-based clustering for this purpose which generates K mixture Markov models to group students' traces containing their (dis)engagement behavioral patterns. To prevent the Expectation-Maximization (EM) algorithm from getting stuck in a local maxima, we also introduced a K-means-based initialization method named as K-EM. We performed an experimental work on two real datasets using the three variants of the EM algorithm: the original EM, emEM, K-EM; and, non-mixture baseline models for both datasets. The proposed K-EM has shown very promising results and achieved significant performance difference in comparison with the other approaches particularly using the Dataset. Hence, we suggest to perform further experiments using large dataset(s) to validate our method. Additionally, visualization of the resultant clusters through first-order Markov chains reveals very useful insights about (dis)engagement behaviors depicted by the students. We conclude the paper with a discussion on the usefulness of our approach, limitations and potential extensions of this work.
Augmented Reality and Human-Robot Collaboration Framework for Percutaneous Nephrolithotomy
Fu, Junling, Pecorella, Matteo, Iovene, Elisa, Palumbo, Maria Chiara, Rota, Alberto, Redaelli, Alberto, Ferrigno, Giancarlo, De Momi, Elena
During Percutaneous Nephrolithotomy (PCNL) operations, the surgeon is required to define the incision point on the patient's back, align the needle to a pre-planned path, and perform puncture operations afterward. The procedure is currently performed manually using ultrasound or fluoroscopy imaging for needle orientation, which, however, implies limited accuracy and low reproducibility. This work incorporates Augmented Reality (AR) visualization with an optical see-through head-mounted display (OST-HMD) and Human-Robot Collaboration (HRC) framework to empower the surgeon's task completion performance. In detail, Eye-to-Hand calibration, system registration, and hologram model registration are performed to realize visual guidance. A Cartesian impedance controller is used to guide the operator during the needle puncture task execution. Experiments are conducted to verify the system performance compared with conventional manual puncture procedures and a 2D monitor-based visualisation interface. The results showed that the proposed framework achieves the lowest median and standard deviation error across all the experimental groups, respectively. Furthermore, the NASA-TLX user evaluation results indicate that the proposed framework requires the lowest workload score for task completion compared to other experimental setups. The proposed framework exhibits significant potential for clinical application in the PCNL task, as it enhances the surgeon's perception capability, facilitates collision-free needle insertion path planning, and minimises errors in task completion.
A Bayesian approach for prompt optimization in pre-trained language models
Sabbatella, Antonio, Ponti, Andrea, Candelieri, Antonio, Giordani, Ilaria, Archetti, Francesco
A prompt is a sequence of symbol or tokens, selected from a vocabulary according to some rule, which is prepended/concatenated to a textual query. A key problem is how to select the sequence of tokens: in this paper we formulate it as a combinatorial optimization problem. The high dimensionality of the token space com-pounded by the length of the prompt sequence requires a very efficient solution. In this paper we propose a Bayesian optimization method, executed in a continuous em-bedding of the combinatorial space. In this paper we focus on hard prompt tuning (HPT) which directly searches for discrete tokens to be added to the text input with-out requiring access to the large language model (LLM) and can be used also when LLM is available only as a black-box. This is critically important if LLMs are made available in the Model as a Service (MaaS) manner as in GPT-4. The current manu-script is focused on the optimization of discrete prompts for classification tasks. The discrete prompts give rise to difficult combinatorial optimization problem which easily become intractable given the dimension of the token space in realistic applications. The optimization method considered in this paper is Bayesian optimization (BO) which has become the dominant approach in black-box optimization for its sample efficiency along with its modular structure and versatility. In this paper we use BoTorch, a library for Bayesian optimization research built on top of pyTorch. Albeit preliminary and obtained using a 'vanilla' version of BO, the experiments on RoB-ERTa on six benchmarks, show a good performance across a variety of tasks and enable an analysis of the tradeoff between size of the search space, accuracy and wall clock time.